11.已知角φ的終邊經(jīng)過(guò)點(diǎn)P(3,-4),函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的相鄰兩條對(duì)稱軸之間的距離等于$\frac{π}{2}$,則$f(\frac{π}{4})$=( 。
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

分析 由題意可得,最小正周期,求得ω 的值,可得f(x)的解析式.再根據(jù)角φ的終邊經(jīng)過(guò)點(diǎn)P(3,-4),求得cosφ 和sinφ 的值,從而求得函數(shù)的解析式,然后求解$f(\frac{π}{4})$的值.

解答 解:由函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰的兩條對(duì)稱軸之間的距離等于$\frac{π}{2}$,
可得最小正周期為 $\frac{2π}{ω}$=2×$\frac{π}{2}$,求得ω=2,故f(x)=sin(2x+φ).
再根據(jù)角φ的終邊經(jīng)過(guò)點(diǎn)P(3,-4),可得 cosφ=$\frac{x}{r}$=$\frac{3}{5}$,sinφ=$\frac{y}{r}$=-$\frac{4}{5}$,
∴f($\frac{π}{4}$)=sin($\frac{π}{2}$+φ)=cosφ=$\frac{3}{5}$,
故選:B.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,函數(shù)y=Asin(ωx+φ)的圖象特征,兩角和的正弦公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知整數(shù)對(duì)的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按規(guī)律,第600個(gè)數(shù)對(duì)為(5,31).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知若函數(shù)f(x)=x2+2(a-1)x+2
(1)當(dāng)a=2時(shí),試證明f(x)在(0,+∞)上是增函數(shù);
(2)若f(f(2))=14,試求a的值;
(3)若函數(shù)f(x)在區(qū)間(-∞,4)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知命題p:?x∈R,2x=5,則¬p為(  )
A.?x∉R,2x≠5B.?x∈R,2x≠5C.?x∉R,2x≠5D.?x∈R,2x≠5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x)=3x+cos(x+φ),x∈R,則“φ=$\frac{π}{2}$”是“函數(shù)f(x)為奇函數(shù)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知三個(gè)集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-bx+2=0},問同時(shí)滿足B?A,A∪C=A的實(shí)數(shù)a,b是否存在?若存在,求出a,b的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知a2+4b2=1,則2a2+4ab的最大值為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)是定義在[-2,2]上的增函數(shù),且f(1-m)<f(m),則實(shí)數(shù)m的取值范圍($\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知$\overrightarrow{a}$,$\overrightarrow$為單位向量,且$\overrightarrow{a}⊥\overrightarrow$,向量$\overrightarrow{c}$滿足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow{c}$|的范圍為(  )
A.[1,1+$\sqrt{2}$]B.[2-$\sqrt{2}$,2+$\sqrt{2}$]C.[$\sqrt{2},2\sqrt{2}$]D.[3-2$\sqrt{2}$,3+2$\sqrt{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案