不等式|x+log2x|<x+|log2x|的解集是
 
考點(diǎn):絕對(duì)值不等式的解法
專題:不等式的解法及應(yīng)用
分析:由題意可得,x>0.分當(dāng)0<x<1、當(dāng)x≥1兩種情況,分別求得不等式的解集,再取并集,即得所求.
解答: 解:由題意可得,x>0. 若0<x<1,則 log2x<0,∴不等式|x+log2x|<x+|log2x|恒成立.
若x≥1,則 log2x≥0,∴x+log2x>0.
由不等式|x+log2x|<x+|log2x|,可得x+log2x<x+log2x,顯然不等式不成立,故不等式無(wú)解.
綜上可得,不等式的解集為(0,1),
故答案為:(0,1).
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx-xcosx的導(dǎo)函數(shù)為f′(x).
(1)求證:f(x)在(0,π)上為增函數(shù);
(2)若存在x∈(0,π),使得f′(x)>
1
2
x2+λx成立,求實(shí)數(shù)λ的取值范圍;
(3)設(shè)F(x)=f′(x)+2cosx,曲線y=F(x)上存在不同的三點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3),x1<x2<x3,且x1,x2,x3∈(0,π),比較直線AB的斜率與直線BC的斜率的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|x-1|+|2x-1|>a恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x-cosx的零點(diǎn)個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|-2<x<2},B={x|x>1},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是圓O的直徑,延長(zhǎng)AB至C,使AB=2BC,且BC=2,CD是圓O的切線,切點(diǎn)為D,連接AD,則CD=
 
,∠DAB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知任意角θ以x軸為始邊,若終邊經(jīng)過(guò)點(diǎn)P(x0,y0)且|OP|=r(r>0).定義:sicosθ=
y0-x0
r
,稱“sicosθ”為“正余弦函數(shù)”.對(duì)于正余弦函數(shù)y=sicosx,有同學(xué)得到以下結(jié)論:
①該函數(shù)的值域?yàn)閇-
2
2
];
②該函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱;
③該函數(shù)圖象關(guān)于直線x=
4
對(duì)稱;
④該函數(shù)的單調(diào)遞增區(qū)間為[2kπ-
π
4
,2kπ+
4
],(k∈z).
則這些結(jié)論中正確的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(3
3x
+
1
x
4的展開式的各項(xiàng)系數(shù)的和為p,所有二項(xiàng)式系數(shù)的和為q,則p:q的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
25
+
y2
9
=1,過(guò)橢圓右焦點(diǎn)F的直線l交橢圓于A,B兩點(diǎn),交y軸于P點(diǎn).設(shè)
PA
1
AF
PB
2
BF
,則λ12等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案