在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知bsinA=3csinB,a=3,cosB=
2
3

(Ⅰ) 求b的值;
(Ⅱ) 求sin(2B-
π
3
)
的值.
(Ⅰ)在△ABC中,有正弦定理
a
sinA
=
b
sinB
,可得bsinA=asinB,
又bsinA=3csinB,可得a=3c,又a=3,所以c=1.
由余弦定理可知:b2=a2+c2-2accosB,cosB=
2
3
,
即b2=32+12-2×3×cosB,
可得b=
6

(Ⅱ)由cosB=
2
3
,可得sinB=
5
3
,
所以cos2B=2cos2B-1=-
1
9
,
sin2B=2sinBcosB=
4
5
9
,
所以sin(2B-
π
3
)
=sin2Bcos
π
3
-sin
π
3
cos2B
=
4
5
9
×
1
2
-(-
1
9
3
2
=
4
5
+
3
18
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)邊長(zhǎng)分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊(cè)答案