如圖,圓O與離心率為的橢圓T:()相切于點(diǎn)M。
⑴求橢圓T與圓O的方程;
⑵過(guò)點(diǎn)M引兩條互相垂直的兩直線、與兩曲線分別交于點(diǎn)A、C與點(diǎn)B、D(均不重合)。
①若P為橢圓上任一點(diǎn),記點(diǎn)P到兩直線的距離分別為、,求的最大值;
②若,求與的方程。
(1)橢圓的方程為與圓的方程為;(2)①;②的方程為,的方程為或的方程為,的方程為.
【解析】
試題分析:(1)圓的圓心在原點(diǎn),又過(guò)點(diǎn)為,方程易求,而橢圓過(guò)點(diǎn),這實(shí)質(zhì)是橢圓短軸的頂點(diǎn),因此,又離心率,故也易求得,其標(biāo)準(zhǔn)方程易得.(2)①看到點(diǎn)到直線的距離,可能立即想到點(diǎn)到直線的距離公式,當(dāng)然如果這樣做的話,就需要求出直線方程,過(guò)程相對(duì)較難,考慮到直線,由所作的兩條垂線,與直線圍成一個(gè)矩形,從而,我們只要設(shè)點(diǎn)坐標(biāo)為,則,再由點(diǎn)在橢圓上,可把表示為或的函數(shù),從而求出最大值.②這題考查同學(xué)們的計(jì)算能力,設(shè)直線的斜率為,得直線方程,與圓方程和橢圓方程分別聯(lián)立方程組,求出點(diǎn)坐標(biāo),點(diǎn)坐標(biāo),同樣求出的坐標(biāo),再利用已知條件求出,得到直線的方程.
試題解析:(1)由題意知: 解得可知:
橢圓的方程為與圓的方程 4分
(2) ①設(shè)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032305021757814095/SYS201403230502458281873225_DA.files/image032.png">⊥,則因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032305021757814095/SYS201403230502458281873225_DA.files/image035.png">
所以, 7分
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032305021757814095/SYS201403230502458281873225_DA.files/image037.png"> 所以當(dāng)時(shí)取得最大值為,此時(shí)點(diǎn) 9分
②設(shè)的方程為,由解得;
由解得 11分
把中的置換成可得, 12分
所以,
,
由得解得 15分
所以的方程為,的方程為
或的方程為,的方程為 16分
考點(diǎn):(1)圓的方程與橢圓的標(biāo)準(zhǔn)方程;(2)點(diǎn)到直線的距離,直線與圓和橢圓相交問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
x2 |
a2 |
y2 |
b2 |
d | 2 1 |
d | 2 2 |
MA |
MC |
MB |
MD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省東莞市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com