【題目】在中,比長4,比長2,且最大角的余弦值是,則的面積等于______________.
【答案】
【解析】
由a比c長4,b比c長2,用c表示出a與b,可得出a為最大邊,即A為最大角,可得出cosA的值,由A為三角形的內角,利用特殊角的三角函數值求出A的度數,同時利用余弦定理表示出cosA,將表示出的a與b代入,并根據最大角的余弦值,得到關于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面積公式即可求出三角形ABC的面積.
根據題意得:a=c+4,b=c+2,則a為最長邊,
∴A為最大角,又cosA=,且A為三角形的內角,
,
整理得:,即(c3)(c+2)=0,
解得:c=3或c=2(舍去),
∴a=3+4=7,b=3+2=5,
則△ABC的面積S=bcsinA=.
故答案為:.
科目:高中數學 來源: 題型:
【題目】已知動點到定點的距離比到定直線的距離小1.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點和.設線段, 的中點分別為,求證:直線恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知點在橢圓上,將射線繞原點逆時針旋轉,所得射線交直線于點.以為極點,軸正半軸為極軸建立極坐標系.
(1)求橢圓和直線的極坐標方程;
(2)證明::中,斜邊上的高為定值,并求該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,過且垂直于軸的焦點弦的弦長為,過的直線交橢圓于,兩點,且的周長為.
(1)求橢圓的方程;
(2)已知直線,互相垂直,直線過且與橢圓交于點,兩點,直線過且與橢圓交于,兩點.求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大;
(Ⅱ)若a=2,△ABC的面積為,求C的大小。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com