已知f(x)=alnx+
1
2
x2(a>0),若對任意兩個不等的正實(shí)數(shù)x1,x2,都有
f(x1)-f(x2)
x1-x2
>2恒成立,則a的取值范圍是( 。
A、(0,1]
B、(1,+∞)
C、(0,1)
D、[1,+∞)
分析:先將條件“對任意兩個不等的正實(shí)數(shù)x1,x2,都有
f(x1)-f(x2)
x1-x2
>2恒成立”轉(zhuǎn)換成當(dāng)x>0時,f'(x)≥2恒成立,然后利用參變量分離的方法求出a的范圍即可.
解答:解:對任意兩個不等的正實(shí)數(shù)x1,x2,都有
f(x1)-f(x2)
x1-x2
>2恒成立
則當(dāng)x>0時,f'(x)≥2恒成立
f'(x)=
a
x
+x≥2在(0,+∞)上恒成立
則a≥(2x-x2max=1
故選D.
點(diǎn)評:本題主要考查了導(dǎo)數(shù)的幾何意義,以及函數(shù)恒成立問題,同時考查了轉(zhuǎn)化與劃歸的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)是f(x)的導(dǎo)函數(shù),f(x)=ln(x+1)+m-2f′(1),m∈R,且函數(shù)f(x)的圖象過點(diǎn)(0,-2).
(1)求函數(shù)y=f(x)的表達(dá)式;
(2)設(shè)g(x)=
1x
+aln(x+1)-2a
在點(diǎn)(1,g(1))處的切線與y軸垂直,求g(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=aln(x-1),g(x)=x2+bx,F(xiàn)(x)=f(x+1)-g(x),其中a,b∈R.
(Ⅰ)若y=f(x)與y=g(x)的圖象在交點(diǎn)(2,k)處的切線互相垂直,求a,b的值;
(Ⅱ)若x=2是函數(shù)F(x)的一個極值點(diǎn),x0和1是F(x)的兩個零點(diǎn),且x0∈(n,n+1)n∈N,求n;
(Ⅲ)當(dāng)b=a-2時,若x1,x2是F(x)的兩個極值點(diǎn),當(dāng)|x1-x2|>1時,求證:|F(x1)-F(x)|>3-4ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)滿足下面兩個條件,求a的取值范圍.
①在(-∞,1]上存在極值,
②對于任意的θ∈R,c∈R直線l:xsinθ+2y+c=0都不是函數(shù)y=f(x)(x∈(-1,+∞))圖象的切線;
(2)若點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點(diǎn),且2x2=x1+x3,當(dāng)a>0時,△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù) f(x)=x2+2lnx+aln(1+x2).
(I)若a=-
92
求f(x)的極值;
(II)已知f(x)有兩個極值點(diǎn)x1,x2,且x1<x2
(i) 求a的取值范圍
(ii)求證:f(x1)<1-4ln2
(III) a=0時,求證[f'(x)]n-2n-1f'(xn)≥2n(2n-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=[3ln(x+2)-ln(x-2)]

    (Ⅰ)求x為何值時,f(x)在[3,7]上取得最大值;

(Ⅱ)設(shè)F(x)=aln(x-1)-f(x),若F(x)是單調(diào)遞增函數(shù),求a的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案