【題目】已知函數(shù)(其中)的圖象如圖所示:
(1)求函數(shù)的解析式及其對稱軸的方程;
(2)當(dāng)時,方程有兩個不等的實根,求實數(shù)的取值范圍,并求此時的值.
【答案】(1),;(2),.
【解析】
(1)根據(jù)圖像得A=2,利用,求ω值,再利用時取到最大值可求φ,從而得到函數(shù)解析式,進(jìn)而求得對稱軸方程;(2)由得,方程f(x)=2a﹣3有兩個不等實根轉(zhuǎn)為f(x)的圖象與直線y=2a﹣3有兩個不同的交點,從而可求得a的取值范圍,利用圖像的性質(zhì)可得的值.
(1)由圖知, ,解得ω=2,f(x)=2sin(2x+φ),
當(dāng)時,函數(shù)取得最大值,可得,即,
,解得 ,又所以,
故,
令則,
所以的對稱軸方程為;
(2),
所以方程有兩個不等實根時,
的圖象與直線有兩個不同的交點,可得
,
當(dāng)時,,有,
故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】渦陽縣某華為手機(jī)專賣店對市民進(jìn)行華為手機(jī)認(rèn)可度的調(diào)查,在已購買華為手機(jī)的名市民中,隨機(jī)抽取名,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如圖:
分組(歲) | 頻數(shù) |
合計 |
(1)求頻數(shù)分布表中、的值,并補(bǔ)全頻率分布直方圖;
(2)在抽取的這名市民中,從年齡在、內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機(jī)宣傳活動,現(xiàn)從這人中隨機(jī)選取人各贈送一部華為手機(jī),求這人中恰有人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線與x軸交于不同的兩點A,B,曲線Γ與y軸交于點C.
(1)是否存在以AB為直徑的圓過點C?若存在,求出該圓的方程;若不存在,請說明理由;
(2)求證:過A,B,C三點的圓過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對學(xué)習(xí)成績的影響,部分統(tǒng)計數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計 | |
學(xué)習(xí)成績優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認(rèn)為使用智能手機(jī)對學(xué)習(xí)成績有影響?
(Ⅱ)從學(xué)習(xí)成績優(yōu)秀的12名同學(xué)中,隨機(jī)抽取2名同學(xué),求抽到不使用智能手機(jī)的人數(shù)的分布列及數(shù)學(xué)期望.
參考公式:,其中
參考數(shù)據(jù):
0.05 | 0,。025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的五個區(qū)域中,中心區(qū)域是一幅圖畫,現(xiàn)要求在其余四個區(qū)域中涂色,有四種顏色可供選擇.要求每個區(qū)域只涂一種顏色且相鄰區(qū)域所涂顏色不同,則不同的涂色方法種數(shù)為( )
A. 56 B. 72 C. 64 D. 84
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)0<x<,求函數(shù)y=x(3﹣2x)的最大值;
(2)解關(guān)于x的不等式x2-(a+1)x+a<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個三角形的三條邊長,且a=b},則(a,b,c)∈M所對應(yīng)的f(x)的零點的取值集合為 .
(2)若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是 . (寫出所有正確結(jié)論的序號)
①x∈(﹣∞,1),f(x)>0;
②x∈R,使ax , bx , cx不能構(gòu)成一個三角形的三條邊長;
③若△ABC為鈍角三角形,則x∈(1,2),使f(x)=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(1)證明:AC⊥B1D;
(2)求直線B1C1與平面ACD1所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n是正整數(shù),r為正有理數(shù).
(1)求函數(shù)f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(參考數(shù)據(jù): .
(2)證明: ;
(3)設(shè)x∈R,記[x]為不小于x的最小整數(shù),例如 .令 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com