【題目】
已知.f(x)=sinxcosx-cos2x+
(1)求f(x)的最小正周期,并求其圖象對(duì)稱中心的坐標(biāo);
(2)當(dāng)0≤x≤時(shí),求函數(shù)f(x)的值域.
【答案】(1) (k∈Z) (2)
【解析】試題分析:(1)先對(duì)函數(shù)f(x)=sinxcosx-cos2x+=sin2x- (cos2x+1)+化簡(jiǎn)得
f(x)=sin,令sin=0,得=kπ(k∈Z)解得對(duì)稱中心(2)0≤x≤所以-≤2x-≤,根據(jù)正弦函數(shù)圖像得出值域.
試題解析:
(1)f(x)=sinxcosx-cos2x+=sin2x- (cos2x+1)+
=sin2x-cos2x=sin,所以f(x)的最小正周期為π.令sin=0,得=/span>kπ(k∈Z),所以x= (k∈Z).
故f(x)圖象對(duì)稱中心的坐標(biāo)為 (k∈Z).
(2)因?yàn)?≤x≤,所以-≤2x-≤,
所以≤sin≤1,即f(x)的值域?yàn)?/span>.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f2(x)﹣axf(x)恰有6個(gè)零點(diǎn),則a的取值范圍是( )
A.(0,3)
B.(1,3)
C.(2,3)
D.(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對(duì)任意0≤x≤1,都有f(x)≥0,f(x)是增函數(shù),則a=f(2010),b=f( ),c=﹣f( )的大小關(guān)系是( )
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AE:EB=1:2.
(1)求△AEF與△CDF的周長(zhǎng)比;
(2)如果△AEF的面積等于6cm2 , 求△CDF的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(且)是定義域?yàn)?/span>的奇函數(shù).
(1)若,試求不等式的解集;
(2)若,且,求在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題:
①命題:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2﹣x,則x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+,則x0∈(0,+∞),f(x0)=1;
④等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4=3,則S7=21;
⑤在△ABC中,若A>B,則sinA>sinB.
其中真命題是____.(只填寫序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示:
(1)試計(jì)算該產(chǎn)品收益率的中位數(shù);
(2)若該產(chǎn)品的售價(jià)(元)與銷量(萬(wàn)件)之間有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組與的對(duì)應(yīng)數(shù)據(jù):
售價(jià)(元) | 25 | 30 | 38 | 45 | 52 |
銷量(萬(wàn)份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
據(jù)此計(jì)算出的回歸方程為,求的值;
(3)若從上述五組銷量中隨機(jī)抽取兩組,求兩組銷量中恰有一組超過(guò)6萬(wàn)件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn).將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于P.
(1)求證:平面PBD⊥平面BFDE;
(2)求二面角P﹣DE﹣F的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com