將函數(shù)y=sin2x的圖象上所有的點(diǎn)向右平行移動數(shù)學(xué)公式個單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的數(shù)學(xué)公式倍(縱坐標(biāo)不變),則所得函數(shù)的圖象


  1. A.
    關(guān)于點(diǎn)數(shù)學(xué)公式對稱
  2. B.
    關(guān)于直線數(shù)學(xué)公式對稱
  3. C.
    關(guān)于點(diǎn)數(shù)學(xué)公式對稱
  4. D.
    關(guān)于直線數(shù)學(xué)公式對稱
A
分析:先根據(jù)左加右減進(jìn)行左右平移,然后根據(jù)橫坐標(biāo)縮短到原來的倍時w變?yōu)樵瓉淼?倍進(jìn)行橫向變換.
解答:將函數(shù)y=sin2x的圖象上所有的點(diǎn)向右平行移動個單位長度,所得函數(shù)圖象的解析式為y=sin2(x-)=sin(2x-),
再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是y=sin(4x-).
又sin(4×-)=0,所以函數(shù)y=sin(4x-)關(guān)于點(diǎn)(,0)對稱.
故選A.
點(diǎn)評:本題主要考查三角函數(shù)的平移變換.平移的原則是左加右減、上加下減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx(cosx-
3
sinx)

(I)求函數(shù)f(x)的最小正周期;
(II)將函數(shù)y=sin2x的圖象向左平移a(0<a<
π
2
)
個單位,向下平移b個單位,得到函數(shù)y=f(x)的圖象,求ab的值;
(Ⅲ)求函數(shù)f(x)在[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin2x的圖象按向量(
π
2
,1
)平移后得到的圖象對應(yīng)的函數(shù)解析式是( 。
A、y=cos2x+1
B、y=-cos2x+1
C、y=sin2x+1
D、y=-sin2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin2x的圖象向左平移
π
4
π
4
(填絕對值最小的)個單位長度,再向上平移1個單位得到的函數(shù)圖象對應(yīng)的函數(shù)解析式是y=2cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南三模)下面給出的四個命題中:
①以拋物線y2=4x的焦點(diǎn)為圓心,且過坐標(biāo)原點(diǎn)的圓的方程為(x-1)2+y2=1;
②若m=-2,則直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直;
③命題“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
④將函數(shù)y=sin2x的圖象向右平移
π
3
個單位,得到函數(shù)y=sin(2x-
π
6
)的圖象.
其中是真命題的有
①②③
①②③
(將你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•成都一模)將函數(shù)y=sin2x的圖象按向量
a
平移后得到函數(shù)y=sin(2x-
π
3
)
的圖象,則向量
a
可以是( 。

查看答案和解析>>

同步練習(xí)冊答案