含有絕對值符號的不等式,關鍵是去掉絕對值符號,其主要方法有:①公式法:|x|≤a(a>0)________;|x|≥a(a>0)________;a<|x|<b(0<a<b)________;②平方法;③零點分段討論法.

答案:
解析:

-a≤x≤a,x≥a或x≤-a,a<x<b或-b<x<-a


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

我們用符號“||”定義過一些數(shù)字概念,如實數(shù)絕對值的概念:對于a∈R,|a|=
a,a>0
0,a=0
-a,a<0
,可以證明,對任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再寫出兩個這類數(shù)學概念的定義及其成立的不等式;
(2)對于集合A,定義“|A|”為集合A中元素的個數(shù),對任意的集合A、B有類似的不等式成立嗎?如果有,寫出一個,并指出等號成立的條件(不必說明理由);如果沒有,請說明理由;
(3)設有集合A、B,若|A|=15,|B|≥15,若從A中任取兩上元素,恰好都是B中元素的概率p≥
1
5
,求|A∩B|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式|2x+m|<xm(x∈R).

本題考查含有絕對值不等式的解法.解題關鍵是對m進行分類討論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

我們用符號“||”定義過一些數(shù)字概念,如實數(shù)絕對值的概念:對于a∈R,|a|=數(shù)學公式,可以證明,對任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再寫出兩個這類數(shù)學概念的定義及其成立的不等式;
(2)對于集合A,定義“|A|”為集合A中元素的個數(shù),對任意的集合A、B有類似的不等式成立嗎?如果有,寫出一個,并指出等號成立的條件(不必說明理由);如果沒有,請說明理由;
(3)設有集合A、B,若|A|=15,|B|≥15,若從A中任取兩上元素,恰好都是B中元素的概率數(shù)學公式,求|A∩B|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若二次函數(shù)y=f(x)的圖象經(jīng)過原點,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范圍.

分析:要求f(-2)的取值范圍,只需找到含人f(-2)的不等式(組).由于y=f(x)是二次函數(shù),所以應先將f(x)的表達形式寫出來.即可求得f(-2)的表達式,然后依題設條件列出含有f(-2)的不等式(組),即可求解.

查看答案和解析>>

同步練習冊答案