等差數(shù)列中,,.
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

(1)(2)

解析試題分析:
(1)根據(jù)等差數(shù)列的通項(xiàng)公式,可知需要求出首項(xiàng)和公差,利用已知,展開(kāi)聯(lián)立可得首項(xiàng)和公差,從而得到數(shù)列的通項(xiàng)公式.
(2)將(1)中結(jié)果代入,根據(jù)其特點(diǎn),分裂該通項(xiàng)為,然后求和,可以抵消除去首項(xiàng)和末項(xiàng)的所有項(xiàng),從而求得數(shù)列的和.
試題解析:
(1)設(shè)等差數(shù)列的公差為d,則.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6a/9/qtl481.png" style="vertical-align:middle;" />,所以.
解得.
所以的通項(xiàng)公式為.
(2) .
所以.
考點(diǎn):等差數(shù)列求通項(xiàng);裂項(xiàng)相消法求數(shù)列前項(xiàng)和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

遞減的等差數(shù)列的前n項(xiàng)和為,若
(1)求的等差通項(xiàng);
(2)當(dāng)n為多少時(shí),取最大值,并求出其最大值;
(3)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}滿(mǎn)足a1>0,an+1=2-,。
(1)若a1,a2,a3成等比數(shù)列,求a1的值;
(2)是否存在a1,使數(shù)列{an}為等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正項(xiàng)等差數(shù)列的前n項(xiàng)和為,若,且,成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角的對(duì)邊分別為,且成等差數(shù)列
(1)若,求的面積
(2)若成等比數(shù)列,試判斷的形狀

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的前n項(xiàng)和為,且滿(mǎn)足條件
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)任意正整數(shù),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}是一個(gè)公差為的等差數(shù)列,已知它的前10項(xiàng)和為,且a1,a2,a4 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列滿(mǎn)足
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)的公差大于零的等差數(shù)列,已知,.
(1)求的通項(xiàng)公式;
(2)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案