【題目】在平面直角坐標系xOy中,A的坐標為(2,0),B是第一象限內(nèi)的一點,以C為圓心的圓經(jīng)過OAB三點,且圓C在點A,B處的切線相交于P,若P的坐標為(4,2),則直線PB的方程為_____.
【答案】x+7y﹣18=0.
【解析】
先求出圓C(1,1),半徑r=|AC|, 設PB的方程為y﹣2=k(x﹣4),由題得,解方程即得解.
根據(jù)題意,A的坐標為(2,0),以C為圓心的圓經(jīng)過OAB三點,
則圓心C在線段OA的垂直平分線上,
設圓心C的坐標為(1,b),
圓C在點A,B處的切線相交于P,若P的坐標為(4,2),則kPA1,則kAC1,
解可得:b=1,即C(1,1),圓C的半徑r=|AC|,
其圓C的方程為(x﹣1)2+(y﹣1)2=2,直線PB的斜率必定存在,
設PB的方程為y﹣2=k(x﹣4),即kx﹣y﹣4k+2=0,
則有,解可得k或1(舍);
故PB的方程為y﹣2(x﹣4),變形可得x+7y﹣18=0;
故答案為:x+7y﹣18=0.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】因客流量臨時增大,某鞋店擬用一個高為50(即)的平面鏡自制一個豎直擺放的簡易鞋鏡,根據(jù)經(jīng)驗:一般顧客的眼睛到地面的距離為()在區(qū)間內(nèi),設支架高為(),,顧客可視的鏡像范圍為(如圖所示),記的長度為().
(I)當時,試求關于的函數(shù)關系式和的最大值;
(II)當顧客的鞋在鏡中的像滿足不等關系(不計鞋長)時,稱顧客可在鏡中看到自己的鞋,若使一般顧客都能在鏡中看到自己的鞋,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的參數(shù)方程為(為參數(shù)),P是曲線C上的點且對應的參數(shù)為,.直線l過點P且傾斜角為.
(1)求曲線C的普通方程和直線l的參數(shù)方程.
(2)已知直線l與x軸,y軸分別交于,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,令
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若關于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列{an}滿足:對任意n∈N*,均有an=bn+cn成立,且{bn},{cn}都是等比數(shù)列,則稱(bn,cn)是數(shù)列{an}的一個等比拆分.
(1)若an=2n,且(bn,bn+1)是數(shù)列{an}的一個等比拆分,求{bn}的通項公式;
(2)設(bn,cn)是數(shù)列{an}的一個等比拆分,且記{bn},{cn}的公比分別為q1,q2;
①若{an}是公比為q的等比數(shù)列,求證:q1=q2=q;
②若a1=1,a2=2,q1q2=﹣1,且對任意n∈N*,an+13<anan+1an+2+an+2﹣an恒成立,求a3的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程是.
(1)寫出曲線的普通方程和的直角坐標方程;
(2)求上的點到距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程以及直線的直角坐標方程;
(2)將曲線向左平移2個單位,再將曲線上的所有點的橫坐標縮短為原來的,得到曲線,求曲線上的點到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com