分析 (1)連AC,設(shè)AC與BD相交于點(diǎn)O,AP與平面BDD1B1相交于點(diǎn),連接OG,證明AO⊥平面BDD1B1,說(shuō)明∠AGO是AP與平面BDD1B1所成的角.在Rt△AOG中,利用直線(xiàn)AP與平面BDD1B1所成的角的正切值為4$\sqrt{2}$.求出m的值.
(2)點(diǎn)Q應(yīng)當(dāng)是AICI的中點(diǎn),使得對(duì)任意的m,D1Q在平面APD1上的射影垂直于AP,通過(guò)證明 D1O1⊥平面ACC1A1,D1O1⊥AP.利用三垂線(xiàn)定理推出結(jié)論.
解答 解:(1)連AC,設(shè)AC與BD相交于點(diǎn)O,AP與平面BDD1B1相交于點(diǎn)G,
連接OG,因?yàn)镻C∥平面BDD1B1,平面BDD1B1∩平面APC=OG,
故OG∥PC,所以,OG=$\frac{1}{2}$PC=$\frac{m}{2}$.
又AO⊥BD,AO⊥BB1,所以AO⊥平面BDD1B1,
故∠AGO是AP與平面BDD1B1所成的角.
在Rt△AOG中,tan∠AGO=$\frac{\frac{\sqrt{2}}{2}}{\frac{m}{2}}=4\sqrt{2}$,即m=$\frac{1}{4}$.
所以,當(dāng)m=$\frac{1}{4}$時(shí),直線(xiàn)AP與平面BDD1B1所成的角的正切值為4$\sqrt{2}$.
(2)可以推測(cè),點(diǎn)Q應(yīng)當(dāng)是AICI的中點(diǎn),當(dāng)是中點(diǎn)時(shí)
因?yàn)镈1O1⊥A1C1,且 D1O1⊥A1A,A1C1∩A1A=A1,
所以 D1O1⊥平面ACC1A1,
又AP?平面ACC1A1,故 D1O1⊥AP.
那么根據(jù)三垂線(xiàn)定理知,D1O1在平面APD1的射影與AP垂直.
點(diǎn)評(píng) 本題考查直線(xiàn)與平面所成的角,考查直線(xiàn)與平面垂直的判定,三垂線(xiàn)定理的應(yīng)用,考查空間想象能力,邏輯推理能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{10}}}{10}$ | B. | $\frac{{\sqrt{10}}}{10}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{15}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
學(xué)生 | A1 | A2 | A3 | A4 | A5 |
數(shù)學(xué)x(分) | 89 | 91 | 93 | 95 | 97 |
物理y(分) | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com