如圖所示,下列三圖中的多邊形均為正多邊形,M、N是所在邊的中點,雙曲線均以圖中的F1,F2為焦點,設圖中的雙曲線的離心率分別為e1,e2,e3,則                                  (   )
A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2
D
在圖(1)中令|F1F2|=2c,因為M為中點,所以|F1M|=c且|MF2|=

在圖(2)中,令|F1M|=m,則|F1F2|=2,|MF2|=

在圖(3)中, 令|F1F2|=2c,則|F1P|=c,|F2P|=.∴e3=.故e1=e3 >e2.故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知點A(-1, 0)、B(1, 0), 動點C滿足條件:△ABC的周長為2+2.記動點C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)經(jīng)過點(0, )且斜率為k的直線l與曲線W有兩個不同的交點PQ,
k的取值范圍;
(Ⅲ)已知點M,0),N(0, 1),在(Ⅱ)的條件下,是否存在常數(shù)k,使得向量共線?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知曲線;(1)由曲線C上任一點E向X軸作垂線,垂足為F,。問:點P的軌跡可能是圓嗎?請說明理由;(2)如果直線L的斜率為,且過點,直線L交曲線C于A,B兩點,又,求曲線C的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設拋物線的準線與軸交于,焦點為;以為焦點,離心率的橢圓與拋物線軸上方的交點為,延長交拋物線于點,是拋物線上一動點,且M之間運動.
(1)當時,求橢圓的方程;
(2)當的邊長恰好是三個連續(xù)的自然數(shù)時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P(8,1)平分雙曲線x2-4y2=4的一條弦,則這條弦所在直線的斜率是_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點,直線為平面上的動點,過點作直線的垂線,垂足為,且
(1)求動點的軌跡的方程;
(2)已知圓過定點,圓心在軌跡上運動,且圓軸交于兩點,設,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點A(-2,0),動點B是圓F為圓心)上一點,線段AB的垂直平分線交BFP.
(1)求動點P的軌跡方程;
(2)是否存在過點E(0,-4)的直線lP點的軌跡于點R,T,且滿足 (O為原點),若存在,求直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的焦點在軸上,它的一個頂點恰好是拋物線的焦點,離心率,過橢圓的右焦點作與坐標軸不垂直的直線交橢圓于兩點.
(1)求橢圓方程; 
(2)設點是線段上的一個動點,且,求的取值范圍;
(3)設點是點關于軸對稱點,在軸上是否存在一個定點,使得三點共線?若存在,求出定點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設在平面上,,所圍成圖形的面積為,則集合的交集所表示的圖形面積為
(A)        (B)        (C)      (B) .                        (   )

查看答案和解析>>

同步練習冊答案