【題目】如圖,在直角梯形,,,點的中點,現(xiàn)沿將平面折起,設.

1)當為直角時,求直線與平面所成角的大小;

2)當為多少時,三棱錐的體積為;

3)在(2)的條件下,求此時二面角的大小.

【答案】1;(2;(3

【解析】

(1)先證明直線與平面所成角為,再在直角三角形中求解正切值即可.

(2)根據(jù)體積求出到平面的距離.再求解即可.

(3)中點,證明二面角,再求解的余弦值即可.

(1)為直角時,因為點的中點,,故四邊形為矩形.

,又,,故,又,

平面.故直線與平面所成角為.

.故.

即直線與平面所成角的大小為.

(2)到平面的距離為.因為,.

平面.到平面的高線在平面.

..

,..

(3) 中點,連接.因為,.

.,.故二面角.

(1),,.此時

..

故二面角.

,.此時

..

故二面角.

綜上二面角

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率;先由計算器給出09之間取整數(shù)值的隨機數(shù),指定0、1、2、3表示沒有擊中目標, 4、5、6、7、8、9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結果,經(jīng)隨機模擬產生了20組隨機數(shù),根據(jù)以下數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為(

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

A.0.4B.0.45C.0.5D.0.55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)求函數(shù)的極值點.

)設函數(shù),其中,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,,F分別在線段BCAD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF

求證:平面MFD

,求證:

求四面體NFEC體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(一),在直角梯形ABCP中,CP∥AB,CP⊥BC,AB=BC=CP,D是CP的中點,將△PAD沿AD折起,使點P到達點P′的位置得到圖(二),點M為棱P′C上的動點.

(1)當M在何處時,平面ADM⊥平面P′BC,并證明;

(2)若AB=2,∠P′DC=135°,證明:點C到平面P′AD的距離等于點P′到平面ABCD的距離,并求出該距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓,分別為其左、右焦點,過的直線與此橢圓相交于兩點,且的周長為8,橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)在平面直角坐標系中,已知點與點,過的動直線(不與軸平行)與橢圓相交于兩點,點是點關于軸的對稱點.求證:

i三點共線.

ii

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓經(jīng)過定點,且與直線相切,設動圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設過點的直線,分別與曲線交于,兩點,直線的斜率存在,且傾斜角互補,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱錐放置在以為直徑的半圓面上,為圓心,為圓弧上的一點,為線段上的一點,且,,.

(Ⅰ)求證:平面平面

(Ⅱ)當二面角的平面角為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓,點是圓內一個定點,點是圓上任意一點,線段的垂直平分線和半徑相交于點.當點在圓上運動時,點的軌跡為曲線.

1)求曲線的方程;

2)設過點的直線與曲線相交于兩點(點兩點之間).是否存在直線使得?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案