【題目】設(shè)數(shù)列滿足:;所有項(xiàng)

設(shè)集合,將集合中的元素的最大值記為.換句話說(shuō),

數(shù)列中滿足不等式的所有項(xiàng)的項(xiàng)數(shù)的最大值我們稱數(shù)列為數(shù)列

伴隨數(shù)列例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3

1若數(shù)列的伴隨數(shù)列為1,1,1,2,2,2,3,請(qǐng)寫出數(shù)列;

2設(shè),求數(shù)列的伴隨數(shù)列的前100之和;

(3)若數(shù)列的前項(xiàng)和(其中常數(shù)),試求數(shù)列的伴隨數(shù)列項(xiàng)和

【答案】11,4,72 見(jiàn)解析3

【解析】試題分析:(1)根據(jù)伴隨數(shù)列的定義求出數(shù)列;(2)根據(jù)伴隨數(shù)列的定義得: ,由對(duì)數(shù)的運(yùn)算對(duì)分類討論求出伴隨數(shù)列的前100項(xiàng)以及它們的和;(3)由題意和的關(guān)系式求出,代入,并求出伴隨數(shù)列的各項(xiàng),再對(duì)分類討論,分別求出伴隨數(shù)列的前項(xiàng)和

試題解析:(1)1,4,7.

(2)由,得

∴ 當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

3

當(dāng)時(shí),

得:

∵使得成立的的最大值為,

當(dāng)時(shí):

當(dāng)時(shí):

當(dāng)時(shí):

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若時(shí)取到極值,求的值及的圖象在處的切線方程;

(2)若時(shí)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=3,且an+1﹣3an=3n,(n∈N*),數(shù)列{bn}滿足bn=3﹣nan

(1)求證:數(shù)列{bn}是等差數(shù)列;

(2)設(shè),求滿足不等式的所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)當(dāng)時(shí),的最小值;

(Ⅱ)若函數(shù)恰有兩個(gè)不同極值點(diǎn)

①求的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,設(shè)圓4 cos 與直線l (R)交于A,B兩點(diǎn).

求以AB為直徑的圓的極坐標(biāo)方程;

(Ⅱ)在圓任取一點(diǎn),在圓上任取一點(diǎn),求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若不等式的解集為,求實(shí)數(shù)的值;

(2)在(1)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三棱柱中,已知側(cè)面.

1)求證 平面;

2是棱長(zhǎng)上的一點(diǎn),若二面角的正弦值為,的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)若當(dāng)時(shí),函數(shù)的圖象恒在直線上方,求實(shí)數(shù)的取值范圍;

(2)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案