函數(shù)f(x)=x2在區(qū)間上,則( 。

A.f(x)的值變化很小

B.f(x)的值變化很大

C.f(x)的值不變化

D.當(dāng)n很大時(shí),f(x)的值變化很小

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南通市高三第二次模擬考試數(shù)學(xué)試題 題型:解答題

設(shè)定義在區(qū)間[x1, x2]上的函數(shù)y=f(x)的圖象為C,M是C上的任意一點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)向

=,=(x,y),當(dāng)實(shí)數(shù)λ滿足x=λ x1+(1-λ) x2時(shí),記向

+(1-λ).定義“函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指

k恒成立”,其中k是一個(gè)確定的正數(shù).

(1)設(shè)函數(shù) f(x)=x2在區(qū)間[0,1]上可在標(biāo)準(zhǔn)k下線性近似,求k的取值范圍;

(2)求證:函數(shù)在區(qū)間上可在標(biāo)準(zhǔn)k=下線性近似.

(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間[x1, x2]上的函數(shù)y=f(x)的圖象為C,MC上的任意一點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)向量=,,=(x,y),當(dāng)實(shí)數(shù)λ滿足x=λ x1+(1-λ) x2時(shí),記向量=λ+(1-λ).定義“函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指“k恒成立”,其中k是一個(gè)確定的正數(shù).

(1)設(shè)函數(shù) f(x)=x2在區(qū)間[0,1]上可在標(biāo)準(zhǔn)k下線性近似,求k的取值范圍;

(2)求證:函數(shù)在區(qū)間上可在標(biāo)準(zhǔn)k=下線性近似.

(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間[x1, x2]上的函數(shù)y=f(x)的圖象為C,MC上的任意一點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)向量=,,=(x,y),當(dāng)實(shí)數(shù)λ滿足x=λ x1+(1-λ) x2時(shí),記向量=λ+(1-λ).定義“函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指“k恒成立”,其中k是一個(gè)確定的正數(shù).

(1)設(shè)函數(shù) f(x)=x2在區(qū)間[0,1]上可在標(biāo)準(zhǔn)k下線性近似,求k的取值范圍;

(2)求證:函數(shù)在區(qū)間上可在標(biāo)準(zhǔn)k=下線性近似.

(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)

設(shè)定義在區(qū)間[x1, x2]上的函數(shù)y=f(x)的圖象為CMC上的任意一點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)向

=,,=(xy),當(dāng)實(shí)數(shù)λ滿足x=λ x1+(1-λ) x2時(shí),記向

=λ+(1-λ).定義“函數(shù)y=f(x)在區(qū)間[x1x2]上可在標(biāo)準(zhǔn)k下線性近似”是指

k恒成立”,其中k是一個(gè)確定的正數(shù).

(1)設(shè)函數(shù) f(x)=x2在區(qū)間[0,1]上可在標(biāo)準(zhǔn)k下線性近似,求k的取值范圍;

(2)求證:函數(shù)在區(qū)間上可在標(biāo)準(zhǔn)k=下線性近似.

(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

查看答案和解析>>

同步練習(xí)冊(cè)答案