【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=(
A.
B.
C.
D.

【答案】D
【解析】解:因為將函數(shù)f(x)=sin2x的周期為π,函數(shù)的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的可知,兩個函數(shù)的最大值與最小值的差為2,有|x1﹣x2|min= ,
不妨x1= ,x2= ,即g(x)在x2= ,取得最小值,sin(2× ﹣2φ)=﹣1,此時φ=- ,不合題意,
x1= ,x2= ,即g(x)在x2= ,取得最大值,sin(2× ﹣2φ)=1,此時φ= ,滿足題意.
故選:D.
利用三角函數(shù)的最值,求出自變量x1 , x2的值,然后判斷選項即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:對數(shù)有意義;命題q:實數(shù)t滿足不等式.

(Ⅰ)若命題p為真,求實數(shù)的取值范圍;

(Ⅱ)若命題p是命題q的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:若關(guān)于的方程無實數(shù)根,則;命題:若關(guān)于的方程有兩個不相等的正實數(shù)根,則.

(1)寫出命題的否命題,并判斷命題的真假;

(2)判斷命題“”的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,解答下列問題:

(1)求輸入的的值分別為時,輸出的的值;

(2)根據(jù)程序框圖,寫出函數(shù))的解析式;并求當關(guān)于的方程有三個互不相等的實數(shù)解時,實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如下表:

若將當日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”.已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為2:3.

(1)確定的值,并補全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當日被評為“皇冠店”,試判斷該網(wǎng)店當日能否被評為“皇冠店”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關(guān)于的不等式恰好有4個整數(shù)解,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐, 底面,底面為正方形, 分別是的中點.

(Ⅰ)求證: ;

(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

【答案】C

【解析】設球半徑為R,圓柱的體積為時圓柱的體積最大為 ,因此材料利用率= ,選C.

點睛:空間幾何體與球接、切問題的求解方法

求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.

型】單選題
結(jié)束】
12

【題目】已知拋物線 在點處的切線與曲線 相切,若動直線分別與曲線、相交于兩點,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大。

查看答案和解析>>

同步練習冊答案