分析 由已知求出數(shù)列前幾項,可以發(fā)現(xiàn)數(shù)列是以4為周期的周期數(shù)列,由此求得a1+a2+a3+…+a2015的值.
解答 解:由a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,得${a}_{2}=\frac{1+{a}_{1}}{1-{a}_{1}}=\frac{1+2}{1-2}=-3$,
${a}_{3}=\frac{1-3}{1+3}=-\frac{1}{2}$,${a}_{4}=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}$,${a}_{5}=\frac{1+\frac{1}{3}}{1-\frac{1}{3}}=2$,
由上可知,數(shù)列{an}是以4為周期的周期數(shù)列,
且${a}_{1}+{a}_{2}+{a}_{3}+{a}_{4}=2-3-\frac{1}{2}+\frac{1}{3}$=$-\frac{7}{6}$,
∴a1+a2+a3+…+a2015=503×$(-\frac{7}{6})$+2-3-$\frac{1}{2}$=$-\frac{1765}{3}$.
故答案為:$-\frac{1765}{3}$.
點評 本題考查了數(shù)列遞推式,關(guān)鍵是對數(shù)列周期性的發(fā)現(xiàn),是中檔題.
科目:高中數(shù)學 來源:2017屆河北正定中學高三上月考一數(shù)學(理)試卷(解析版) 題型:解答題
已知橢圓的左、右焦點分別為,橢圓過點,直線交軸于,且,為坐標原點.
(1)求橢圓的方程;
(2)設(shè)是橢圓的上頂點,過點分別作直線交橢圓于兩點,設(shè)這兩條直線的斜率分別為,且,證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | 0 | $\frac{π}{6}$ | $\frac{π}{4}$ | $\frac{π}{2}$ |
y | 1 | $\frac{1}{2}$ | 0 | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com