18.在區(qū)間[0,2]上任取兩個實數(shù)x,y,則x2+y2≤1 的概率為$\frac{π}{16}$.

分析 該題涉及兩個變量,故是與面積有關的幾何概型,分別表示出滿足條件的面積和整個區(qū)域的面積,最后利用概率公式解之即可.

解答 解:由題意可得,區(qū)間[0,2]上任取兩個實數(shù)x,y的區(qū)域為邊長為2的正方形,面積為4.
∵x2+y2≤1的區(qū)域是圓的面積的$\frac{1}{4}$,其面積S=$\frac{π}{4}$,
∴在區(qū)間[0,2]上任取兩個實數(shù)x,y,則x2+y2≤1 的概率為$\frac{π}{16}$.
故答案為$\frac{π}{16}$.

點評 本題主要考查了與面積有關的幾何概率的求解,解題的關鍵是準確求出區(qū)域的面積,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知向量$\overrightarrow a$=(cos($\frac{π}{2}$-x),sin($\frac{π}{2}$+x)),$\overrightarrow b$=(sin($\frac{π}{2}$+x),sinx),若x=-$\frac{π}{12}$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知命題p:?x∈R,mx2+1<0,命題q:?x∈R,x2+mx+1>0,若p∧q為真命題,則實數(shù)m的取值范圍是( 。
A.(-∞,-2)B.[-2,0)C.(-2,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.橢圓E經(jīng)過點A(2,3),對稱軸為坐標軸,離心率$e=\frac{1}{2}$,焦點F1、F2在x軸上,過左焦點F1 與A 做直線交橢圓E于B.
(1)求橢圓E的方程;
(2)求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知定義在R上的奇函數(shù)f(x),當x>0時,f(x)=-x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)寫出f(x)單調(diào)區(qū)間(不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在三角形ABC中,已知A=60°,b=1,其面積為$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinc}$為(  )
A.$3\sqrt{3}$B.$\frac{{\sqrt{39}}}{2}$C.$\frac{{26\sqrt{3}}}{3}$D.$\frac{{2\sqrt{39}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若集合A={-1,0,1,2},集合B={-1,1,3,5},則A∩B等于( 。
A.{-1,1}B.{-1,0,1}C.{-1,0,1,2}D.{-1,0,1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\frac{2{e}^{x}}{{e}^{x}+1}$,在F(x)=f(x)+1和G(x)=f(x)-1中,G(x)為奇函數(shù),若f(b)=$\frac{3}{2}$,則f(-b)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知直線l過點P(2,4),且與圓O:x2+y2=4相切,則直線l的方程為(  )
A.x=2或3x-4y+10=0B.x=2或x+2y-10=0C.y=4或3x-4y+10=0D.y=4或x+2y-10=0

查看答案和解析>>

同步練習冊答案