若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為e1=和e2=.
(1)求矩陣A.
(2)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
二階矩陣M對應(yīng)的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(1)求矩陣M;
(2)設(shè)直線l在變換M作用下得到了直線m:x-y=4,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知矩陣A=有一個屬于特征值1的特征向量.
(Ⅰ) 求矩陣A;
(Ⅱ) 若矩陣B=,求直線先在矩陣A,再在矩陣B的對應(yīng)變換作用下的像的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若曲線C:x2+4xy+2y2=1在矩陣M=對應(yīng)的線性變換作用下變成曲線C':x2-2y2=1.
(1)求a,b的值.
(2)求M的逆矩陣M-1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com