1.已知(x,y)滿足不等式組$\left\{\begin{array}{l}x+y-2≥0\\ x-y≥0\\ 2x-y-4≤0\end{array}\right.$則$\frac{y}{x+1}$的取值范圍是$[0,\frac{4}{5}]$.

分析 由約束條件作出可行域,利用$\frac{y}{x+1}$的幾何意義,即可行域內(nèi)的動(dòng)點(diǎn)與定點(diǎn)M(-1,0)連線的斜率求得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y≥0\\ 2x-y-4≤0\end{array}\right.$作出可行域如圖,
$\frac{y}{x+1}$的幾何意義為可行域內(nèi)的動(dòng)點(diǎn)與定點(diǎn)M(-1,0)連線的斜率,
聯(lián)立$\left\{\begin{array}{l}{x-y=0}\\{2x-y-4=0}\end{array}\right.$,解得A(4,4),
∵${k}_{MA}=\frac{4-0}{4-(-1)}=\frac{4}{5}$,
∴$\frac{y}{x+1}$的取值范圍是$[0,\frac{4}{5}]$.
故答案為:$[0,\frac{4}{5}]$.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$cos({α+\frac{π}{6}})=\frac{1}{3}$,$α∈[{0,\frac{π}{2}}]$,那么cosα等于( 。
A.$\frac{2\sqrt{2}-\sqrt{3}}{6}$B.$\frac{2\sqrt{2}+\sqrt{3}}{6}$C.$\frac{2\sqrt{3}-\sqrt{2}}{6}$D.$\frac{2\sqrt{3}+\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足x2f′(x)+2xf(x)=1+lnx,f(1)=0,若關(guān)于x的方程f(x)=a有兩個(gè)不等實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算:
(1)$\frac{1}{\sqrt{0.04}}$+($\frac{1}{\sqrt{27}}$)${\;}^{\frac{1}{3}}$+($\sqrt{2}$+1)-1-2${\;}^{\frac{1}{2}}$+(-2)0;
(2)$\frac{2}{5}$lg32+lg50+$\sqrt{(lg3)^{2}-lg9+1}$-lg$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.“x>2或x<0”是“$\frac{1}{x}<1$”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某基建公司年初以100萬(wàn)元購(gòu)進(jìn)一輛挖掘機(jī),以每年22萬(wàn)元的價(jià)格出租給工程隊(duì).基建公司負(fù)責(zé)挖掘機(jī)的維護(hù),第一年維護(hù)費(fèi)為2萬(wàn)元,隨著機(jī)器磨損,以后每年的維護(hù)費(fèi)比上一年多2萬(wàn)元,同時(shí)該機(jī)器第x(x∈N*,x≤16)年末可以以(80-5x)萬(wàn)元的價(jià)格出售.
(1)寫(xiě)出基建公司到第x年末所得總利潤(rùn)y(萬(wàn)元)關(guān)于x(年)的函數(shù)解析式,并求其最大值;
(2)為使經(jīng)濟(jì)效益最大化,即年平均利潤(rùn)最大,基建公司應(yīng)在第幾年末出售挖掘機(jī)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在四邊形ABCD中,設(shè)$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{BC}=\overrightarrow$,$\overrightarrow{AD}$=$\overrightarrow{c}$,則$\overrightarrow{CD}$等于( 。
A.$\overrightarrow{c}$-($\overrightarrow{a}$+$\overrightarrow$)B.$\overrightarrow$-($\overrightarrow{a}+\overrightarrow{c}$)C.$\overrightarrow{a}+\overrightarrow-\overrightarrow{c}$D.$\overrightarrow{a}-\overrightarrow+\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{a}{{a}^{2}-2}$(ax-a-x)(其中a>0且a≠1)在(-∞,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖是一個(gè)幾何體的正視圖和側(cè)視圖,其俯視圖是面積為8$\sqrt{2}$的矩形.則該幾何體的表面積是20+8$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案