求證一個三角形中最多有一個直角.
考點:反證法與放縮法
專題:證明題,反證法
分析:在反證法的步驟中,第一步是假設結論不成立,再引出矛盾即可.
解答: 證明:假設三角形三個內角中最少有兩個直角,
則三個內角的和大于180°,這與三個內角的和等于180°矛盾.
故一個三角形中最多有一個直角.
點評:此題主要考查了反證法的步驟,主要有:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.在假設結論不成立時,要注意考慮結論的反面所有可能的情況,這里三角形中最多有一個是直角的反面是三角形中有一個或兩個角是直角.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

為了選拔參加奧運會選手,教練員對甲,乙自行車運動員進行了6次測試,測得他們的速度數(shù)據(jù)如下表所示(單位m/s).
            7
8  7  5  1  0
2
3
8  9
      3  4  6  8
估計甲、乙兩運動員各自速度的平均數(shù)和方差,并判斷誰參加比賽更合適.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面上有n條直線,它們任意兩條不平行,任意三條不共點.設n(n≥1,n∈N)條這樣的直線把平面分成f(n)個區(qū)域,試求出f(1),f(2),f(3),f(4),f(5).由此猜想出f(n)并用數(shù)學歸納法給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|21+
2
x-3
<1},B={y|y2-(m2+m-1)y+m3-m2<0}
(1)試用區(qū)間集表示集合B;
(2)若B⊆∁RA,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由世界自然基金會發(fā)起的“地球1小時”活動,已發(fā)展成為最有影響力的環(huán)保活動之一,今年的參與人數(shù)再創(chuàng)新高.然而也有部分公眾對該活動的實際效果與負面影響提出了疑問.對此,某新聞媒體進行了網(wǎng)上調查,所有參與調查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 保留 不支持
20歲以下 800 450 200
20歲以上(含20歲) 100 150 300
(Ⅰ)在所有參與調查的人中,用分層抽樣的方法抽取n個人,已知從“支持”態(tài)度的人中抽取了45人,求n的值;
(Ⅱ)所有參與調查的人中,完成下面列聯(lián)表,并由表中數(shù)據(jù)分析,能否認為持“支持”態(tài)度與“20歲以下”有關?
(Ⅲ)在接受調查的人中,有8人給這項活動打出的分數(shù)如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8個人打出的分數(shù)看作一個總體,從中任取1個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.
持支持態(tài)度 不持支持態(tài)度 合計
20歲以下
20歲以上(含20歲)
合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地去年9月份曾發(fā)生流感,據(jù)統(tǒng)計,9月1日該地區(qū)流感病毒的新感染者有40人,此后,每天的新感染者人數(shù)比前一天新感染者人數(shù)增加40人;但從9月11日起,該地區(qū)醫(yī)療部門采取措施,使該種病毒的傳播得到控制,每天的新感染者人數(shù)比前一天的新感染者人數(shù)減少10人.
(Ⅰ)分別求出該地區(qū)在9月10日和9月11日這兩天的流感病毒的新感染者人數(shù);
(Ⅱ)該地區(qū)9月份(共30天)該病毒新感染者共有多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)滿足:存在T∈R,T≠0,對定義域內的任意x,f(x+T)=f(x)+f(T)恒成立,則稱f(x)
為T函數(shù).現(xiàn)給出下列函數(shù):①y=
1
x
; ②y=ex;③y=lnx;④y=sinx.其中為T函數(shù)的序號是
 
.(把你認為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩校各有2名教師報名支教,其中甲校2男,乙校1男1女.若從甲校和乙校報名的教師中任選2名,則選出的2名教師來自同一學校的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四面體A-BCD的棱長為1,O為底面BCD的中心,則
AB
AO
=
 

查看答案和解析>>

同步練習冊答案