精英家教網 > 高中數學 > 題目詳情

函數y=f(x)是定義在R上的增函數,函數y=f(x-2010)的圖象關于點(2010,0)對稱.若實數x,y滿足不等式f(x2-6x)+f(y2-8y+24)<0,則x2+y2的取值范圍是


  1. A.
    (0,16)
  2. B.
    (0,36)
  3. C.
    (16,36)
  4. D.
    (0,+∞)
C
分析:本題考查的是函數的性質及其綜合應用,由已知條件我們可以判定函數y=f(x)是定義在R上的增函數,而且是奇函數,則不難求出滿足條件實數x,y滿足不等式f(x2-6x)+f(y2-8y+24)<0,對應的平面區(qū)域,分析表達式x2+y2的幾何意義,找出滿足條件的點的坐標,即可求出答案.
解答:∵函數y=f(x-2010)的圖象關于點(2010,0)對稱
∴函數y=f(x)的圖象關于點(0,0)對稱
即函數y=f(x)為奇函數,
則f(-x)=-f(x)
則不等式f(x2-6x)+f(y2-8y+24)<0可化為:
f(x2-6x)<-f(y2-8y+24)=f(-y2+8y-24)
又由函數y=f(x)是定義在R上的增函數
∴x2-6x<-y2+8y-24
即x2-6x+y2-8y+24<0
即(x-3)2+(y-4)2<1
則(x,y)點在以(3,4)為圓心,以1為半徑的圓內
而x2+y2表示的是圓內任一點到原點距離的平方
∴(5-1)2=16<x2+y2<(5+1)2=36
故選C
點評:函數的性質與圓的方程都是高考必須要考的知識點,此題巧妙地將函數的性質與圓的方程融合在一起進行考查,題目有一定的思維含量但計算量不大,所以題型設置為選擇題,該試題立足基礎考查了學生思維能力與運算能力以及靈活運用所學數學知識處理相關問題的能力,有一定的選拔作用同時對中學數學教學具有產生較好地導向作用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數y=f(x)=ax+
1x+b
(a≠0)
的圖象過點(0,-1)且與直線y=-1有且只有一個公共點;設點P(x0,y0)是函數y=f(x)圖象上任意一點,過點P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心Q;
(3)證明:線段PM,PN長度的乘積PM•PN為定值;并用點P橫坐標x0表示四邊形QMPN的面積..

查看答案和解析>>

科目:高中數學 來源: 題型:

某旅游點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元.根據經驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數,并要求出租所有自行車一日的總收入必須超過一日的管理費用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費后的所得).
(1)求函數y=f(x)的解析式及定義域;
(2)試問日凈收入最多時每輛自行車的日租金應定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,已知:射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動點P(x,y)在∠AOx的內部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(1)當k為定值時,動點P的縱坐標y是橫坐標x的函數,求這個函數y=f(x)的解析式;
(2)根據k的取值范圍,確定y=f(x)的定義域.

查看答案和解析>>

科目:高中數學 來源: 題型:

關于函數y=f(x),有下列命題:
①若a∈[-2,2],則函數f(x)=
x2+ax+1
的定域為R;
②若f(x)=log
1
2
(x2-3x+2)
,則f(x)的單調增區(qū)間為(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,則
lim
x→2
[(x-2)f(x)]=0
;
(文)若f(x)=
1
x2-x-2
,則值域是(-∞,0)∪(0,+∞)
④定義在R的函數f(x),且對任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個周期.
其中真命題的編號是
 
.(文理相同)

查看答案和解析>>

科目:高中數學 來源: 題型:

某服裝批發(fā)商場經營的某種服裝,進貨成本40元/件,對外批發(fā)價定為60元/件.該商場為了鼓勵購買者大批量購買,推出優(yōu)惠政策:一次購買不超過50件時,只享受批發(fā)價;一次購買超過50件時,每多購買1件,購買者所購買的所有服裝可在享受批發(fā)價的基礎上,再降低0.1元/件,但最低價不低于50元/件.
(Ⅰ)問一次購買150件時,每件商品售價是多少?
(Ⅱ)問一次購買200件時,每件商品售價是多少?
(Ⅲ)設購買者一次購買x件,商場的售價為y元,試寫出函數y=f(x)的表達式.

查看答案和解析>>

同步練習冊答案