求證:函數(shù)y=Atan(ωx+φ)(A≠0,ω≠0)為奇函數(shù)的充要條件是φ=k∈Z).

思路分析:充要條件的證明要從兩方面證:充分性和必要性.在證明時(shí)要分清命題的題設(shè)與結(jié)論,明確充分性與必要性.

證明:充分性:

φ=,∴y=Atan(ωx+φ)=Atan(ωx+)=Atanωx,

又∵f(-x)=Atan(-ωx)=-Atanωx=-fx),

y=tanωx是奇函數(shù).

必要性:

∵函數(shù)fx)=Atan(ωx+φ)是奇函數(shù),∴f(-x)=-fx),

Atan(-ωx+φ)=-Atan(ωx+φ),A≠0,ω≠0.

原式可化為tan(ωxφ)=tan(ωx+φ),

.

∴tanωx-tan2ωxtanφ-tanφ+tanωxtan2φ

=tanωx+tanφ+tan2ωxtanφ+tanωxtan2φ.

∴2tanφ+2tan2ωxtanφ=0.

∴2tanφ(1+tan2ωx)=0.

∴tanφ=0.∴φ=,k∈Z.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aex和g(x)=lnx-lna的圖象與坐標(biāo)軸的交點(diǎn)分別是點(diǎn)A,B,且以點(diǎn)A,B為切點(diǎn)的切線互相平行.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)F(x)=g(x)+
1x
,求函數(shù)F(x)的極值;
(Ⅲ)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱(chēng)為兩函數(shù)在x0處的偏差,求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)對(duì)于定義在(0,+∞)上的函數(shù)f(x),滿足xf′(x)+2f(x)<0,求證:函數(shù)y=x2f(x)在(0,+∞)上是減函數(shù);
(2)請(qǐng)你認(rèn)真研讀(1)中命題并聯(lián)系以下命題:若f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),滿足xf′(x)+f(x)<0,則y=xf(x)是(0,+∞)上的減函數(shù).然后填空建立一個(gè)普遍化的命題:設(shè)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),n∈N+,若
x
x
×f′(x)+n×f(x)<0,則
y=xnf(x)
y=xnf(x)
是(0,+∞)上的減函數(shù).
注:命題的普遍化就是從考慮一個(gè)對(duì)象過(guò)渡到考慮包含該對(duì)象的一個(gè)集合;或者從考慮一個(gè)較小的集合過(guò)渡到考慮包含該較小集合的更大集合.
(3)證明(2)中建立的普遍化命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+ln(x+1)x
和g(x)=x-1-ln(x+1)
(I)函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?說(shuō)明理由;
(II)求證:函數(shù)y=g(x)在區(qū)間(2,3)上有唯一零點(diǎn);
(III)當(dāng)x>0時(shí),不等式xf(x)>kg'(x)恒成立,其中g(shù)'(x)是g(x)導(dǎo)函數(shù),求正整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•武漢模擬)(1)已知函數(shù)m(x)=ax2e-x (a>0),求證:函數(shù)y=m(x)在區(qū)間[2,+∞)上為減函數(shù).
(2)已知函數(shù)f(x)=ax2+2ax,g(x)=ex,若在(0,+∞)上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案