,恒成立,則△ABC的形狀一定是                 (    )

A.銳角三角形     B.直角三角形      C.鈍角三角形           D.不能確定

 

 

【答案】

B

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(A)在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線C2θ=
π4
,若曲線C1與C2交于A、B兩點,則線段AB=
 

(B)若|x-1|+x-2||+|x-3|≥m恒成立,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)同時滿足下列條件:①在閉區(qū)間[a,b]內(nèi)連續(xù),②在開區(qū)間(a,b)內(nèi)可導(dǎo)且其導(dǎo)函數(shù)為f′(x),那么在區(qū)間(a,b)內(nèi)至少存在一點ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我們把這一規(guī)律稱為函數(shù)f(x)在區(qū)間(a,b)內(nèi)具有“Lg”性質(zhì),并把其中的ξ稱為中值.有下列命題:
①若函數(shù)f(x)在(a,b)具有“Lg”性質(zhì),ξ為中值,點A(a,f(a)),B(b,f(b)),則直線AB的斜率為f′(ξ);
②函數(shù)y=
2-
x2
2
在(0,2)內(nèi)具有“Lg”性質(zhì),且中值ξ=
2
,f′(ξ)=-
2
2
;
③函數(shù)f(x)=x3在(-1,2)內(nèi)具有“Lg”性質(zhì),但中值ξ不唯一;
④若定義在[a,b]內(nèi)的連續(xù)函數(shù)f(x)對任意的x1、x2∈[a,b],x1<x2,有
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)恒成立,則函數(shù)f(x)在(a,b)內(nèi)具有“Lg”性質(zhì),且必有中值ξ=
x1+x2
2

其中你認(rèn)為正確的所有命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=asinx+bcosx,其中a,b∈R,ab≠0.若f(x)≤|f(
π
3
)|
對一切x∈R恒成立,則
f(
6
)=0
;
|f(
21
)|>|f(
π
2
)|
;
③存在a,b使f(x)是奇函數(shù);  
④f(x)的單調(diào)增區(qū)間是[2kπ+
π
3
,2kπ+
3
],k∈Z
;
⑤經(jīng)過點(a,b)的所有直線與函數(shù)f(x)的圖象都相交.
以上結(jié)論正確的是
①②⑤
①②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,E,F(xiàn)分別是邊AC,AB的中點,且3AB=2AC,若
BE
CF
<t
恒成立,則t的最小值為
7
8
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知D是函數(shù)y=f(x),x∈[a,b]圖象上的任意一點,A、B為該圖象的兩個端點,點C滿足
AC
AB
,
DC
i
=0,(其中0<λ<1,
i
是x軸上的單位向量),若|
DC
|≤T(T為常數(shù))在區(qū)間[a,b]上恒成立,則稱y=f(x)在區(qū)間[a,b]上具有“T性質(zhì)”.現(xiàn)有函數(shù):
①y=2x+1;     ②y=
2
x
+1
;     ③y=x2;       ④y=x-
1
x

則在區(qū)間[1,2]上具有“
1
4
性質(zhì)”的函數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案