如圖,
ABCD-
A1B1C1D1為正方體,下面結(jié)論錯誤的是
A.BD∥平面CB1D1 | B.AC1⊥BD |
C.AC1⊥平面CB1D1 | D.異面直線AD與CB所成的角為60° |
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是正方體
的一條對角線,則這個正方體中面對角線與
異面的有( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題14分).在四棱錐
中,底面
是矩形,
平面
,
,
.以
的中點
為球心、
為直徑的球面交
于點
,交
于點
.
(1)求直線
與平面
所成的角的正弦值;
(2)求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,已知四棱柱ABCD—A
1B
1C
1D
1中,A
1D⊥底面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA
1=2。
(I)求證:C
1D//平面ABB
1A
1;
(II)求直線BD
1與平面A
1C
1D所成角的正弦值;
(Ⅲ)求二面角D—A
1C
1—A的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐
中,已知△
是正三角形,
平面
,
,為
的中點,
在棱
上,且
,
(1)求證:
平面
;
(2)求平面
與平面
所成的銳二面角的余弦值;
(3)若
為
的中點,問
上是否存在一點
,使
平面
?若存在,說明點
的位置;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分).如圖,在棱長為4的正方體ABCD-A
1B
1C
1D
1中,E是D
1C
1上的一點且EC
1=3D
1 E,
(1) 求直線BE與平面ABCD所成角的正切值;
(2)求異面直線BE與CD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
選修4-1:幾何證明選講
如圖,已知
是⊙
的切線,
為切點,
是⊙O的割線,與⊙
交于
,
兩點,圓心
在
的內(nèi)部,點
是
的中點.
(1)求證:
,
,
,
四點共圓;
(2)求
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知三棱錐
的四個頂點均在半徑為
的球面上,且滿足
,
,
,則三棱錐
的側(cè)面積的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,
為正三角形,
平面ABC,AD//BE,且BE=AB+2AD,P是EC的中點。
求證:(1)PD//平面ABC;
(2)EC
平面PBD。
查看答案和解析>>