11.若函數(shù)y=loga(x+1)(a>0,a≠1)的圖象過(guò)定點(diǎn),則x值為( 。
A.-1B.0C.1D.無(wú)法確定

分析 根據(jù)對(duì)數(shù)函數(shù)的圖象恒過(guò)(1,0)點(diǎn),然后利用函數(shù)圖象的平移即可得到答案.

解答 解:因?yàn)閥=logax的圖象恒過(guò)(1,0)點(diǎn),
又y=loga(x+1)的圖象是把y=logax的圖象左移1個(gè)單位得到的,
所以y=loga(x+1)的圖象必過(guò)定點(diǎn)(0,0).
故選B.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了函數(shù)圖象的平移,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=ex+x-5.,則f(x)的零點(diǎn)所在區(qū)間為( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(α)=$\frac{sin(2π-α)cos(\frac{π}{2}+α)}{cos(-\frac{π}{2}+α)tan(π+α)}$,則f($\frac{π}{3}$)=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.一質(zhì)點(diǎn)做直線運(yùn)動(dòng),在x(單位:s)時(shí)離出發(fā)點(diǎn)的距離(單位:m)為f(x)=$\frac{2}{3}$x3+x2+2x.
(1)求質(zhì)點(diǎn)在第1s內(nèi)的平均速度;
(2)求質(zhì)點(diǎn)在第1s末的瞬時(shí)速度;
(3)經(jīng)過(guò)多長(zhǎng)時(shí)間質(zhì)點(diǎn)的運(yùn)動(dòng)速度達(dá)到14m/s?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若圓x2+y2-ax+2y+1=0與圓x2+y2=1關(guān)于直線y=x-l對(duì)稱,過(guò)點(diǎn)C(-a,a)的圓P與y軸相切,則圓心P的軌跡方程為y2+4x-4y+8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x<0}\\{-{x}^{2}+x,x≥0}\end{array}\right.$,則f(f(2))=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=log2(ax2-x-2a)在區(qū)間(-∞,-1)上是單調(diào)減函數(shù),則實(shí)數(shù)a的取值范圍是[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=a2x-2ax+1+2(a>0,a≠1)的定義域?yàn)閤∈[-1,+∞)
(1)若a=2,求y=f(x)的最小值;
(2)當(dāng)0<a<1時(shí),若至少存在x0∈[-2,-1]使得f(x0)≤3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.正三棱錐的頂點(diǎn)都在同一球面上.若該棱錐的高為3,底面邊長(zhǎng)為3,則該球的表面積為( 。
A.B.C.16πD.$\frac{32π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案