(本題滿(mǎn)分15分)已知函數(shù)
(1)求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若,且對(duì)任意恒成立,求的最大值;
(1); (2)整數(shù)的最大值是3.

試題分析:(1)解:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003524796741.png" style="vertical-align:middle;" />,所以
函數(shù)的圖像在點(diǎn)處的切線方程;…………5分
(2)解:由(1)知,,所以對(duì)任意恒成立,即對(duì)任意恒成立.…………7分
,則,……………………8分
,則,
所以函數(shù)上單調(diào)遞增.………………………9分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240035251081236.png" style="vertical-align:middle;" />,所以方程上存在唯一實(shí)根,且滿(mǎn)足
當(dāng),即,當(dāng),即,…13分
所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.
所以.…………14分
所以.故整數(shù)的最大值是3.………………………15分
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問(wèn)題,像涉及恒成立問(wèn)題,往往通過(guò)研究函數(shù)的最值達(dá)到解題目的。涉及對(duì)數(shù)函數(shù),要特別注意函數(shù)的定義域。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)
(2)是否存在實(shí)數(shù),使上的最小值為,若存在,求出的值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某生物生長(zhǎng)過(guò)程中,在三個(gè)連續(xù)時(shí)段內(nèi)的增長(zhǎng)量都相等,在各時(shí)段內(nèi)平均增長(zhǎng)速度分別為v1,v2, v3,該生物在所討論的整個(gè)時(shí)段內(nèi)的平均增長(zhǎng)速度為(  )。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線在點(diǎn)處的切線與直線垂直,則實(shí)數(shù)的值為    (     )
A.2   B.-2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)在區(qū)間上的最小值和最大值;
(Ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
已知函數(shù)
(Ⅰ)若函數(shù),處取得極值,求的值;
(Ⅱ)若,函數(shù)上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,則     。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)
設(shè)點(diǎn)P在曲線上,從原點(diǎn)向A(2,4)移動(dòng),如果直線OP,曲線及直線x=2所圍成的面積分別記為

(Ⅰ)當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)有最小值時(shí),求點(diǎn)P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)于都有成立,試求的取值范圍;
(3)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案