如圖,已知Rt△ABC的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC邊為直徑與AB交于點(diǎn)D,則三角形ACD的面積為   
【答案】分析:連CD,先在Rt△ABC中利用勾股定理求出AB=5cm,再利用Rt△ADC∽R(shí)t△ACB求出AD,然后得到AD,從而求出三角形ACD的面積.
解答:解:連CD,如圖,
在Rt△ABC中,因?yàn)锳C、BC的長(zhǎng)分別為3cm、4cm,所以AB=5cm,
∵AC為直徑,
∴∠ADC=90°,
∵∠A公共,
∴Rt△ADC∽R(shí)t△ACB,
=,即 =
∴AD=,
在Rt△ADC中,
∴CD==
則三角形ACD的面積為AD×DC=××=
故答案為
點(diǎn)評(píng):本題考查了三角形的面積公式、圓周角定理.在同圓或等圓中,同弧和等弧所對(duì)的圓周角相等,一條弧所對(duì)的圓周角是它所對(duì)的圓心角的一半.同時(shí)考查了圓周角的推論:直徑所對(duì)的圓周角為90度.也考查了勾股定理以及三角形相似的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC 中,AB=AC=
2
,AD是斜邊BC 上的高,以 AD為折痕,將△ABD折起,使∠BDC為直角.
(1)求證:平面ABD⊥平面BDC;
(2)求證:∠BAC=60°
(3)求點(diǎn)D到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(A)(幾何證明選講選做題)如圖,已知Rt△ABC的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,則BD的長(zhǎng)為=
16
5
16
5
;
(B)(不等式選講選做題)關(guān)于x的不等式|x-1|+|x-2|≤a2+a+1的解集為空集,則實(shí)數(shù)a的取值范圍是
(-1,0)
(-1,0)
;
(C)(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為
x=3cosθ
y=sinθ
(θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos(θ-
π
3
)=6
.點(diǎn)P在曲線C上,則點(diǎn)P到直線l的距離的最小值為
6-
3
6-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•汕頭二模)如圖,已知Rt△ABC的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC邊為直徑與AB交于點(diǎn)D,則三角形ACD的面積為
54
25
cm2
54
25
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)诙}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(幾何證明選做題)如圖,已知RT△ABC的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則
BD
DA
=
16
9
16
9

(2)(坐標(biāo)系與參數(shù)方程選做題)已知圓C的圓心是直線
x=t
y=1+t
(t為參數(shù))與x軸的交點(diǎn),且圓C與直線x+y+3=0相切.則圓C的方程為
(x+1)2+y2=2
(x+1)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)選做題(請(qǐng)考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過(guò)程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長(zhǎng).
(2)已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),求曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)上式取等號(hào).請(qǐng)利用以上結(jié)論,求函數(shù)f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案