已知S1=1•C1+2•C11=3×2S2=1•C2+2•C21+3•C22=4×2S3=1•C3+2•C31+3•C32+4•C33=5×22…類比推理得出的一般結論是:Sn=1•Cn+2•Cn1+3•Cn2+…+n•Cnn=   
【答案】分析:本題考查的知識點是歸納推理,由S1=1•C1+2•C11=3×2,S2=1•C2+2•C21+3•C22=4×2,S3=1•C3+2•C31+3•C32+4•C33=5×22…我們可得右邊式子的系數(shù)比左邊的項數(shù)多1,右邊式子的底數(shù)均為2,右邊式子的指數(shù)比左邊的項數(shù)少2.
解答:解:由S1=1•C1+2•C11=3×2,
S2=1•C2+2•C21+3•C22=4×2,
S3=1•C3+2•C31+3•C32+4•C33=5×22

我們可得右邊式子的系數(shù)比左邊的項數(shù)多1,
右邊式子的底數(shù)均為2,
右邊式子的指數(shù)比左邊的項數(shù)少2.
由此我們推斷:Sn=1•Cn+2•Cn1+3•Cn2+…+n•Cnn=( n+2)•2n-1
故答案為:(n+2)•2n-1
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知z是實系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標平面上的對應點為Pz,
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(非端點),則Pz在圓C上、寫出線段s的表達式,并說明理由;
(3)由(2)知線段s與圓C之間確定了一種對應關系,通過這種對應關系的研究,填寫表(表中s1是(1)中圓C1的對應線段).
    線段s與線段s1的關系 m、r的取值或表達式 
 s所在直線平行于s1所在直線  
 s所在直線平分線段s1  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,一個焦點坐標為F(-
3
,0)

(1)求橢圓C1的方程;
(2)點N是橢圓的左頂點,點P是橢圓C1上不同于點N的任意一點,連接
NP并延長交橢圓右準線與點T,求
TP
NP
的取值范圍;
(3)設曲線C2:y=x2-1與y軸的交點為M,過M作兩條互相垂直的直線與曲線C2、橢圓C1相交于點A、D和B、E,(如圖),記△MAB、
△MDE的面積分別是S1,S2,當
S1
S2
=
27
64
時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波模擬)如圖,已知圓C1x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標原點O的直線與C2相交于點A、B,定點M坐標為(0,-1),直線MA,MB分別與C1相交于點D、E.
(1)求證:MA⊥MB.
(2)記△MAB,△MDE的面積分別為S1、S2,若
S1S2
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•眉山二模)設a1≤a2≤…≤an,b1≤b2≤…≤bn為兩組實數(shù),c1,c2,…,cn是b1,b2,…,bn的任一排列,我們稱S=a1c1+a2c2+a3c3+…+ancn為兩組實數(shù)的亂序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1為反序和,S2=a1b1+a2b2+a3b3+…+anbn 為順序和.根據(jù)排序原理有:S1≤S≤S2即:反序和≤亂序和≤順序和.給出下列命題:
①數(shù)組(2,4,6,8)和(1,3,5,7)的反序和為60;
②若A=
x
2
1
+
x
2
2
+…+
x
2
n
,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正數(shù),則A≤B;
③設正實數(shù)a1,a2,a3的任一排列為c1,c2,c3
a1
c1
+
a2
c2
+
a3
c3
的最小值為3;
④已知正實數(shù)x1,x2,…,xn滿足x1+x2+…+xn=P,P為定值,則F=
x
2
1
x2
+
x
2
2
x3
+…+
x
2
n-1
xn
+
x
2
n
x1
的最小值為
P
2

其中所有正確命題的序號為
①③
①③
.(把所有正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案