如圖,在三棱錐,,

,,

(Ⅰ)求證:

(Ⅱ)求底面所成角

 

 

 

【答案】

解 : (Ⅰ)設(shè)的中點為,連結(jié),

,,

.

平面.

.

(Ⅱ)∵ ,,,

.

底面所成角.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=
12
PA,點O、D分別是AC、PC的中點,OP⊥底面ABC.
(Ⅰ)求證OD∥平面PAB;
(Ⅱ)求直線OD與平面PBC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥AC,PA⊥AB,PA=AB,∠ABC=
π
3
,∠BCA=
π
2
,點D,E分別在棱PB,PC上,且DE∥BC,
(1)求證:BC⊥平面PAC;
(2)當(dāng)D為PB的中點時,求AD與平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,SA⊥底面ABC,D是SC的中點,已知∠BAC=
π
2
,AB=2,AC=2
3
,SA=2,求:
(1)三棱錐S-ABC的體積;
(2)異面直線BC與AD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.
(1)求證:AC⊥平面DEF;
(2)求平面DEF與平面ABD所成的銳二面角的余弦值;
(3)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)如圖,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點,已知∠BAC=
π
2
,AB=2,AC=2
3
,PA=2,求:
(1)三棱錐P-ABC的體積;
(2)異面直線BC與AD所成的角的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

同步練習(xí)冊答案