【題目】已知A(x0 , 0),B(0,y0)兩點分別在x軸和y軸上運動,且|AB|=1,若動點P(x,y)滿足 .
(1)求出動點P的軌跡對應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線l1與曲線C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程;
(3)直線l2:x=ty+1與曲線C交于A、B兩點,E(1,0),試問:當(dāng)t變化時,是否存在一直線l2 , 使△ABE的面積為 ?若存在,求出直線l2的方程;若不存在,說明理由.
【答案】
(1)解:因為 ,
即 ,
所以 ,
所以
又因為|AB|=1,所以 ,
即: ,
即 ,
所以橢圓的標(biāo)準(zhǔn)方程為 .
(2)解:直線l1斜率必存在,且縱截距為2,設(shè)直線為y=kx+2聯(lián)立直線l1和橢圓方程 ,
得:(3+4k2)x2+16kx+4=0,
由△>0,得 (*),
設(shè)P(x1,y1),Q(x2,y2),
則 (1)
以PQ直徑的圓恰過原點,
所以O(shè)P⊥OQ, ,
即x1x2+y1y2=0,
也即x1x2+(kx1+2)(kx2+2)=0,
即(1+k2)x1x2+2k(x1+x2)+4=0,
將(1)式代入,得 ﹣ +4=0,
即4(1+k2)﹣32k2+4(3+4k2)=0,
解得 ,滿足(*)式,
所以 .
所以直線方程為y=± x+2
(3)解:由方程組 ,得(3t2+4)y2+6ty﹣9=0(*)
設(shè)A(x1,y1),B(x2,y2),
則
所以 ,
因為直線l:x=ty+1過點F(1,0),
所以S△ABE= |EF||y1﹣y2|= ×2× =
令= =2 ,則 不成立
故不存在直線l滿足題意
【解析】(1)根據(jù)向量的坐標(biāo)運算,以及|AB|=1,得到橢圓的標(biāo)準(zhǔn)方程為 .(2)直線l1斜率必存在,且縱截距為2,根據(jù)直線與橢圓的位置關(guān)系,即可求出k的值,問題得以解決.(3)根據(jù)直線和橢圓額位置關(guān)系,以及三角形的面積公式得到S△ABE= ,令= =2 ,則 不成立,問題得以解決.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在其定義域上為單調(diào)增函數(shù),求的取值范圍;
(2)記的導(dǎo)函數(shù)為,當(dāng)時,證明:存在極小值點,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點的坐標(biāo)為.
(1)求點的坐標(biāo);
(2)求函數(shù)的單調(diào)增區(qū)間及對稱軸方程;
(3)若把方程的正實根從小到大依次排列為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了檢查本縣甲、乙兩所學(xué)校的學(xué)生對安全知識的學(xué)習(xí)情況,在這兩所學(xué)校進行了安全知識測試,隨機在這兩所學(xué)校各抽取20名學(xué)生的考試成績作為樣本,成績大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀,統(tǒng)計結(jié)果如下圖:
甲校 乙校
(1)從乙校成績優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績恰有一個落在內(nèi)的概率;
(2)由以上數(shù)據(jù)完成下面列聯(lián)表,并回答能否在犯錯的概率不超過0.1的前提下認(rèn)為學(xué)生的成績與兩所學(xué)校的選擇有關(guān)。
甲校 | 乙校 | 總計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
總計 |
參考數(shù)據(jù) | P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | span>3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為 .
(1)求數(shù)列{an}的通項公式an;
(2)是否存在正整數(shù)n,使得 ?若存在,求出n值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)圖象向左平移 個單位后,得到函數(shù)的圖象關(guān)于點( ,0)對稱,則函數(shù)g(x)=cos(x+φ)在[﹣ , ]上的最小值是( )
A.﹣
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2 .
(2)若a+b=1,求證: + + ≥12.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓: ,點.
(1)求經(jīng)過點且與圓相切的直線的方程;
(2)過點的直線與圓相交于、兩點,為線段的中點,求線段長度的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com