【題目】如圖,在三棱柱中,側(cè)面是菱形,且,平面平面,,,O為的中點(diǎn).
(1)求證:
(2)求二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)連接,,通過(guò)證明、,證得平面,從而證得.
(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算二面角的余弦值.
(1)如圖,連接,,在矩形中,,O為的中點(diǎn),所以三角形和三角形為等腰直角三角形,所以.
因?yàn)?/span>,,所以為正三角形,
又O為的中點(diǎn),所以,
又平面平面,平面平面,
平面,
所以平面C.
又平面,所以,又,
所以平面,
又平面,
所以.
(2)取的中點(diǎn)E,連接OE,則,所以OA,OB,OE兩兩垂直,
如圖,以O為坐標(biāo)原點(diǎn),分別以,,為x軸,y軸,z軸的正方向,建立空間直角坐標(biāo)系,
則0,,0,,0,,,
0,,,,0,.
設(shè)平面OBC的法向量為y,,則,即,
令,得0,是平面OBC的一個(gè)法向量,
同理可求得平面的一個(gè)法向量為1,,
則,,
由圖知二面角為銳二面角,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,C是圓上的點(diǎn),平面PAC⊥平面ABC,PA⊥AB.
(1)求證:PA⊥平面ABC;
(2)若PA=AC=2,求點(diǎn)A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面四邊形ABCD中,,,,(如圖1),若將沿對(duì)角線BD折疊,使(如圖2).請(qǐng)?jiān)趫D2中解答下列問(wèn)題.
(1)證明:;
(2)求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬(wàn)元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬(wàn)元,經(jīng)預(yù)測(cè)可知,市場(chǎng)對(duì)這種產(chǎn)品的年需求量為500件,當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時(shí),銷售所得的收入約為(萬(wàn)元).
(1)若該公司的年產(chǎn)量為x(單位:百件),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤(rùn)表示為年產(chǎn)量x的函數(shù);
(2)當(dāng)這種產(chǎn)品的年產(chǎn)量為多少時(shí),當(dāng)年所得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(x+)+sin(x﹣)+cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,f(A)=,△ABC的面積為,AB=,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:與拋物線C:相切.
(1)求拋物線方程;
(2)斜率不為0的直線經(jīng)過(guò)拋物線C的焦點(diǎn)F,交拋物線于兩點(diǎn)A,B,拋物線C上是否存在兩點(diǎn)D,E關(guān)于直線對(duì)稱.若存在求出斜率k的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),圓的極坐標(biāo)方程為.
(1)寫出直線的方程和圓的直角坐標(biāo)方程;
(2)若點(diǎn)為圓上一動(dòng)點(diǎn),求點(diǎn)到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的有( )
A.設(shè)正六棱錐的底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為,那么它的體積為
B.用斜二測(cè)法作△ABC的水平放置直觀圖得到邊長(zhǎng)為a的正三角形,則△ABC面積為
C.三個(gè)平面可以將空間分成4,6,7或者8個(gè)部分
D.已知四點(diǎn)不共面,則其中任意三點(diǎn)不共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將各位數(shù)碼不大于3的全體正整數(shù)m按自小到大的順序排成一個(gè)數(shù)列,則__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com