【題目】已知在平面直角坐標(biāo)系中,直線(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)直角坐標(biāo)為,直線與曲線交于,兩點(diǎn),求的值.
【答案】(1)直線的普通方程為,曲線的直角坐標(biāo)方程為;(2)3.
【解析】
(1)由參數(shù)方程消去參數(shù)即可得到普通方程,由極坐標(biāo)方程與直角坐標(biāo)方程的互化即可得出直角坐標(biāo)方程;
(2)先將直線的參數(shù)方程化為(為參數(shù)),代入曲線C的方程,根據(jù)參數(shù)的幾何意義即可求出結(jié)果.
解:(1)直線的普通方程為.
因?yàn)?/span>,
所以,
所以.
故曲線的直角坐標(biāo)方程為.
(2)據(jù)題設(shè)分析知,直線的參數(shù)方程為(為參數(shù)).
代直線的參數(shù)方程入曲線的方程并化簡,得.
由參數(shù)的幾何意義知,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北. 湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記.由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn).在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業(yè)單位 | 40 | 50 | |
個體經(jīng)營戶 | 50 | 150 | |
合計 |
(1)寫出選擇 5 個國家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)補(bǔ)全上述列聯(lián)表(在答題卡填寫),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;
(3)根據(jù)該試點(diǎn)普查小區(qū)的情況,為保障第四次經(jīng)濟(jì)普查的順利進(jìn)行,請你從統(tǒng)計的角度提出一條建議.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A(2,4)
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,o)滿足:存在圓M上的兩點(diǎn)P和Q,使得,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個動點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點(diǎn)的直線與橢圓的另一個交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)與點(diǎn)的距離和它到直線的距離相等,記點(diǎn)的軌跡為曲線
(1)求曲線的方程
(2)設(shè)點(diǎn),動點(diǎn)在曲線上運(yùn)動時,的最短距離為,求的值以及取到最小值時點(diǎn)的坐標(biāo)
(3)設(shè)為曲線的任意兩點(diǎn),滿足(為原點(diǎn)),試問直線是否恒過一個定點(diǎn)?如果是,求出定點(diǎn)坐標(biāo);如果不是,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)過作斜率分別為的兩條直線,分別交橢圓于點(diǎn),且,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,,D是垂足,則推廣到空間,三棱錐中,面面,O為垂足,且O在三角形BCD內(nèi),則類似的結(jié)論為___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于曲線C所在平面上的定點(diǎn),若存在以點(diǎn)為頂點(diǎn)的角,使得對于曲線C上的任意兩個不同的點(diǎn)A,B恒成立,則稱角為曲線C相對于點(diǎn)的“界角”,并稱其中最小的“界角”為曲線C相對于點(diǎn)的“確界角”.曲線相對于坐標(biāo)原點(diǎn)的“確界角”的大小是 _________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com