【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,焦距長為2,左準(zhǔn)線為

1)求橢圓的方程及其離心率;

2)若過點(diǎn)的直線交橢圓 兩點(diǎn),且為線段的中點(diǎn),求直線的方程;

3)過橢圓右準(zhǔn)線上任一點(diǎn)引圓 的兩條切線,切點(diǎn)分別為, .試探究直線是否過定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn);否則,請(qǐng)說明理由.

【答案】1, 23.

【解析】試題分析:(1)根據(jù)條件可得關(guān)于a,b,c方程組,解得 ,即得橢圓的方程及其離心率;(2)利用點(diǎn)差法得中點(diǎn)坐標(biāo)與弦斜率關(guān)系式,解得斜率,根據(jù)點(diǎn)斜式得直線的方程;(3)先根據(jù)兩圓:以為直徑的圓與圓方程相減得切點(diǎn)弦方程,再根據(jù)方程恒等得定點(diǎn)

試題解析:(1)設(shè)橢圓方程為,則,所以,

又其準(zhǔn)線為,所以,則

所以橢圓方程為,其離心率為

(2)設(shè)點(diǎn)和點(diǎn)坐標(biāo)分別為, ,因?yàn)辄c(diǎn)和點(diǎn)都在橢圓上,

所以兩式相減得

又點(diǎn)為線段的中點(diǎn),所以

所以直線的斜率為,

所以直線的方程為,即

(3)直線恒過定點(diǎn). 

因?yàn)闄E圓的右準(zhǔn)線方程為,所以設(shè)點(diǎn)坐標(biāo)為,圓心坐標(biāo)為,

因?yàn)橹本, 是圓的兩條切線,所以切點(diǎn), 在以為直徑的圓上.

所以該圓方程為

兩圓方程相減,得直線的方程,

,由

所以直線必過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(﹣x)=f(x),f(x+8)=f(x),且當(dāng)x∈(0,4]時(shí)f(x)= ,關(guān)于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍是(
A.(﹣ ln6,ln2]
B.(﹣ln2,﹣ ln6)
C.(﹣ln2,﹣ ln6]
D.(﹣ ln6,ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平行四邊形ABCD中,AB=2AD,∠DAB=60°,M是BC的中點(diǎn).將△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中點(diǎn),圖2所示.

(Ⅰ)求證:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的動(dòng)點(diǎn),當(dāng) 為何值時(shí),二面角P﹣MC﹣B的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下

1)求出表中及圖中的值

2)若該校高一學(xué)生有800人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù).

【答案】1, , ;2人.

【解析】試題分析:(1)由題意, 內(nèi)的頻數(shù)是10,頻率是0.25知, 所以,則, .(2)高一學(xué)生有800人,分組內(nèi)的頻率是,人數(shù)為人.

試題解析:

1)由內(nèi)的頻數(shù)是10,頻率是0.25知, ,所以.

因?yàn)轭l數(shù)之和為40,所以 .

.

因?yàn)?/span>是對(duì)應(yīng)分組的頻率與組距的商,所以.

2)因?yàn)樵撔8咭粚W(xué)生有800人,分組內(nèi)的頻率是,

所以估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為人.

型】解答
結(jié)束】
18

【題目】已知直線經(jīng)過拋物線的焦點(diǎn)且與交于兩點(diǎn).

1)設(shè)上一動(dòng)點(diǎn), 到直線的距離為,點(diǎn)的最小值;

2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司引進(jìn)一條價(jià)值30萬元的產(chǎn)品生產(chǎn)線,經(jīng)過預(yù)測和計(jì)算,得到生產(chǎn)成本降低萬元與技術(shù)改造投入萬元之間滿足:①的乘積成正比;②當(dāng)時(shí), ,并且技術(shù)改造投入比率 為常數(shù)且

1)求的解析式及其定義域;

2)求的最大值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), (其中是自然對(duì)數(shù)的底數(shù)).

1)若曲線在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的值;

2)記函數(shù),其中,若函數(shù)內(nèi)存在兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;

3)若對(duì)任意, ,且,均有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是  

①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;

③方程有無數(shù)個(gè)根; ④函數(shù)f(x)是增函數(shù).

A. ②③ B. ①②③ C. D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)?-3,3),

滿足f(-x)=-f(x),且對(duì)任意x,y,都有f(x)-f(y)=f(xy),當(dāng)x<0時(shí),f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判斷f(x)的單調(diào)性,并證明;

(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱BB1、CC1上,且BE= BB1 , C1F= CC1

(1)求平面AEF與平面ABC所成角α的余弦值;
(2)若G為BC的中點(diǎn),A1G與平面AEF交于H,且設(shè) = ,求λ的值.

查看答案和解析>>

同步練習(xí)冊答案