9.某幾何體的三視圖如圖所示,求該幾何體的體積.

分析 畫出幾何體的直觀圖,分析其幾何特征,可得答案.

解答 解:由已知中的三視圖,可得:該幾何體是一個(gè)正方體被過體對(duì)角線的一個(gè)平面所截形成的,
其直觀圖如下圖所示:

其體積等于原正方體的一半,
故V=$\frac{1}{2}$×2×2×2=4

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是三視圖,考查空間想像能力,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=3x+4x,函數(shù)g(x)=5x,試判斷兩函數(shù)圖象的公共點(diǎn)個(gè)數(shù)及公共點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={x|2x+10=0},則A=(  )
A.A=5B.A=-5C.A={5}D.A={-5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+ax+b,f(1)=0,f(2)=1
(1)求f(x)的解析式.
(2)求函數(shù)f(x)在區(qū)間[t,2t]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)y=loga(1+2x+3x+m)的值域?yàn)镽,那么實(shí)數(shù)m的取值范圍為(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=|2x-a|(a>0),g(x)=x+2-|2x+1|.
(1)當(dāng)a=1時(shí),求不等式f(x)≥1的解集;
(2)若f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)$y=3sin(ωx+φ)(ω>0,φ∈(-\frac{π}{2},\frac{π}{2}))$的最小正周期為$\frac{π}{2}$,且其圖象關(guān)于直線$x=\frac{π}{12}$對(duì)稱,則下列四個(gè)結(jié)論中正確的編號(hào)為②③(把你認(rèn)為正確的結(jié)論編號(hào)都填上);   
①圖象關(guān)于直線$x=-\frac{π}{8}$對(duì)稱; ②圖象關(guān)于點(diǎn)$(\frac{5π}{24},0)$對(duì)稱;③在$[\frac{π}{6},\frac{π}{3}]$上是減函數(shù); ④在$[-\frac{π}{3},0]$上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.$\frac{(2sin20°-cos10°)}{sin10°}$+$\frac{sin50°(1+\sqrt{3}tan10°)-cos20°}{cos80°\sqrt{1-cos20°}}$=$\sqrt{2}-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額),如下表:
年份20102011201220132014
儲(chǔ)蓄存款y(千億元)567810
(1)求y關(guān)于x的回歸方程 $\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)用所求的回歸方程預(yù)測(cè)該地區(qū)2015年的人民幣儲(chǔ)蓄存款.
注:$\left\{\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ a=\overline y-b\overline x\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案