設(shè)命題:函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c7/6/dtkje.png" style="vertical-align:middle;" />;命題對一切的實(shí)數(shù)恒成立,如果命題“且”為假命題,求實(shí)數(shù)的取值范圍.
解析試題分析:對于命題,函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c7/6/dtkje.png" style="vertical-align:middle;" />,說明對于任意的,恒成立,利用一元二次不等式知識求解;對于命題q,求出的最大值,讓大于的最大值;命題“且”為假命題,說明、至少一假,討論求解.
試題解析:命題:對于任意的,恒成立,則需滿足, 4分
因?yàn)椤?img src="http://thumb.zyjl.cn/pic5/tikupic/e0/3/5twpe1.png" style="vertical-align:middle;" />”為假命題,所以至少一假
(1)若真假,則是空集。 5分
(2)若假真,則 7分
(3)若假假,則 9分
所以 10分
考點(diǎn):命題及其關(guān)系、一元二次不等式恒成立問題、函數(shù)最值求法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題:函數(shù)在區(qū)間上單調(diào)遞減;命題:函數(shù)的最小值不大于0.如果命題為真命題,為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題:“不等式對任意恒成立”,命題:“方程表示焦點(diǎn)在x軸上的橢圓”,若為真命題,為真,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,設(shè):函數(shù)在單調(diào)遞減;:函數(shù)在區(qū)間有兩個(gè)零點(diǎn).如果與有且僅有一個(gè)正確,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題:函數(shù)在上單調(diào)遞增;命題:不等式的解集為,若為真,為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/1/9vc6r.png" style="vertical-align:middle;" />,命題方程在上有解,若命題“或”是假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題p:任意x∈R,x2+1≥a都成立,命題q:方程表示雙曲線.
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若 “p且q”為真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)命題:實(shí)數(shù)滿足,其中;命題:實(shí)數(shù)滿足且是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com