【題目】如圖,已知AD、BE、CF分別是△ABC三邊的高,H是垂心,AD的延長線交△ABC的外接圓于點G.
(1)求證:∠CHG=∠ABC;
(2)求證:ABGD=ADHC.
【答案】
(1)證明:∵AD、CF分別是△ABC三邊的高,
∴AD⊥BC,CF⊥AB,
即有∠HDB=∠HFB=90°,
可得四點H,F,B,D共圓,
由圓內接四邊形的性質可得,
∠CHG=∠ABC.
(2)證明:連結CG,
∵∠ABC與∠AGC同弧圓周角,
∴∠ABC=∠AGC,
∵∠CHG=∠ABC,
∴∠CHG=∠AGC,
∴GC=HC,
在Rt△ADB和Rt△GDC中,
∵∠ABC=∠AGC,即∠ABD=∠CGD,
∴Rt△ADB∽Rt△GDC,
∴ ,
∴ABGD=ADGC,
又∵GC=HC,
∴ABGD=ADHC.
【解析】(1)由三角形的高的定義,可得∠HDB=∠HFB=90°,則四點H,F,B,D共圓,由圓內接四邊形的性質,即可得證;(2)連結CG,由同弧所對圓周角相等,證得Rt△ADB∽Rt△GDC,由相似三角形的性質:對應邊成比例,即可得證.
科目:高中數學 來源: 題型:
【題目】某學生對其30位親屬的飲食習慣進行了一次調查,并用如圖所示的莖葉圖表示他們的飲食指數(說明:圖中飲食指數低于70的人,飲食以蔬菜為主;飲食指數高于70的人,飲食以肉類為主).
(1)根據莖葉圖,幫助這位同學說明這30位親屬的飲食習慣.
(2)根據以上數據完成如下2×2列聯(lián)表.
(3)能否有99%的把握認為其親屬的飲食習慣與年齡有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數方程;
(2)設直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點分別是的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求證: 平面;
(Ⅲ)在棱上求作一點,使得,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學生中抽出40名,將其成績(均為整數)整理后畫出的頻率分布直方圖如下:
觀察圖形,回答下列問題:
(1)估計這次環(huán)保知識競賽成績的中位數;
(2)從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數段的概率?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構造三角形函數”.已知函數f(x)=是“可構造三角形函數”,則實數t的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從2016年1月1日起,廣東、湖北等18個保監(jiān)局所轄地區(qū)將納入商業(yè)車險改革試點范圍,其中最大的變化是上一年的出險次數決定了下一年的保費倍率,具體關系如表:
上一年的 | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
下一年 | 85% | 100% | 125% | 150% | 175% | 200% |
連續(xù)兩年沒有出險打7折,連續(xù)三年沒有出險打6折 |
有評估機構從以往購買了車險的車輛中隨機抽取1000輛調查,得到一年中出險次數的頻數分布如下(并用相應頻率估計車輛每年出險次數的概率):
一年中出險次數 | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
頻數 | 500 | 380 | 100 | 15 | 4 | 1 |
(1)求某車在兩年中出險次數不超過2次的概率;
(2)經驗表明新車商業(yè)車險保費與購車價格有較強的線性相關關系,估計其回歸直線方程為: =120x+1600.(其中x(萬元)表示購車價格,y(元)表示商業(yè)車險保費).李先生2016 年1月購買一輛價值20萬元的新車.根據以上信息,試估計該車輛在2017 年1月續(xù)保時應繳交的保費,并分析車險新政是否總體上減輕了車主負擔.(假設車輛下一年與上一年都購買相同的商業(yè)車險產品進行續(xù)保)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com