15.若數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an-1(n∈N*),等差數(shù)列{bn}滿足b1=3a1,b3=S2+3
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{n+2}{_{n}•_{n+1}•{a}_{n}}$(n∈N*),且{cn}的前n項(xiàng)和為T(mén)n,求證:Tn$<\frac{1}{4}$.

分析 (1)由數(shù)列遞推式求出a1,在數(shù)列遞推式中取n=n-1得另一遞推式,作差后得到數(shù)列{an}為等比數(shù)列,則數(shù)列{an}的通項(xiàng)公式可求,再由b1=3a1,b3=S2+3求出數(shù)列{bn}的首項(xiàng)和公差,則{bn}的通項(xiàng)公式可求.
(2)cn=$\frac{n+2}{(2n+1)(2n+3)•{3}^{n-1}}$,c1=$\frac{1}{5}$,c2=$\frac{4}{105}$,c3=$\frac{5}{567}$,c4=$\frac{2}{891}$,n≥5時(shí),$\frac{n+2}{{3}^{n-1}}$≤$\frac{7}{81}$,cn=<$\frac{7}{162}$($\frac{1}{2n+1}-\frac{1}{2n+3}$),由此能證明Tn<$\frac{1}{4}$.

解答 解:(1)∵數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an-1(n∈N*),①
∴當(dāng)n=1時(shí),2a1=3a1-1,解得a1=1,
當(dāng)n≥2時(shí),2Sn-1=3an-1-1,②,
①-②,得:2an=3an-3an-1,n≥2,
∴an=3an-1
∴{an}是首項(xiàng)為1,公比為3的等比數(shù)列,
∴${a}_{n}={3}^{n-1}$.
∵等差數(shù)列{bn}滿足b1=3a1,b3=S2+3,
∴b1=3a1=3,b3=S2+3=1+3+3=3+2d,解得d=2,
∴bn=3+(n-1)×2=2n+1.
證明:(2)∵cn=$\frac{n+2}{_{n}•_{n+1}•{a}_{n}}$(n∈N*),an=3n-1,bn=2n+1,
∴cn=$\frac{n+2}{(2n+1)(2n+3)•{3}^{n-1}}$,c1=$\frac{3}{3×5}$=$\frac{1}{5}$,${c}_{2}=\frac{4}{5×7×3}$=$\frac{4}{105}$,${c}_{3}=\frac{5}{7×9×9}$=$\frac{5}{567}$,c4=$\frac{6}{9×11×27}$=$\frac{2}{891}$,
n≥5時(shí),$\frac{n+2}{{3}^{n-1}}$≤$\frac{7}{81}$,cn=$\frac{n+2}{(2n+1)(2n+3)•{3}^{n-1}}$<$\frac{7}{81}$×$\frac{1}{(2n+1)(2n+3)}$=$\frac{7}{162}$($\frac{1}{2n+1}-\frac{1}{2n+3}$),
∴Tn<$\frac{1}{5}+\frac{4}{105}$+$\frac{7}{162}$($\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+…+\frac{1}{2n+1}-\frac{1}{2n+3}$)
=$\frac{1}{5}+\frac{4}{105}+\frac{5}{567}$+$\frac{2}{891}$+$\frac{7}{162}$($\frac{1}{11}-\frac{1}{2n+3}$)
<$\frac{1}{5}+\frac{4}{105}+\frac{5}{567}$+$\frac{2}{891}$+$\frac{1}{1782}$
=$\frac{21805}{87318}$$<\frac{1}{4}$.
∴Tn<$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,是中檔題,解題量要注意放縮法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知圓C1:x2+y2=r2與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)于x軸的交點(diǎn)重合,且橢圓C2的離心率為$\frac{\sqrt{2}}{2}$,圓C1上的點(diǎn)到直線l:x=-2$\sqrt{2}$的最短距離為2$\sqrt{2}$-2.
(1)求橢圓C2的方程;
(2)如圖過(guò)直線1上的動(dòng)點(diǎn)T作圓C1的兩條切線,設(shè)切點(diǎn)分別為A、B,若直線AB與橢圓C2交于不同的兩點(diǎn)C、D,求△OCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知某曲線y=f(x)過(guò)點(diǎn)(0,0),且在點(diǎn)(x,y)處的切線斜率k=3x2+1,求該曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系O-xyz的坐標(biāo)分別是(0,1,1),(1,2,1),(1,1,2),(0,3,3),畫(huà)出該四面體的正視圖時(shí),以yOz平面為投影面,則得到的正視圖的面積是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在四邊形ABCD中,$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,試判斷四邊形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知tan(α-$\frac{β}{2}$)=$\frac{1}{2}$,tan(β-$\frac{α}{2}$)=-$\frac{1}{3}$,則tan$\frac{α+β}{2}$=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.給出下列說(shuō)法:
(1)若$\overrightarrow{a}$與$\overrightarrow$同向,且|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$;
(3)若$\overrightarrow{a}$=$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow$;
(4)若$\overrightarrow{a}$=$\overrightarrow$,則|$\overrightarrow{a}$|=|$\overrightarrow$|;
(5)若$\overrightarrow{a}$≠$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$不是共線向量.
其中正確說(shuō)法的序號(hào)是(3)、(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知cos(π+α)=-$\frac{1}{2}$,求sin(2π-α)-tan(α-3π)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖右邊是y=logax(a>0,且a≠1)的圖象,則下列函數(shù)圖象正確的是( 。
A.
y=a|x|
B.
y=1+a|x|
C.
y=logax
D.
y=loga(1-x)

查看答案和解析>>

同步練習(xí)冊(cè)答案