6.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,已知a4=9,a3+a7=22.
(I)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)求證:$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}<\frac{3}{4}$.

分析 (1)通過(guò)等差數(shù)列中下標(biāo)和相等兩項(xiàng)和相等及a3+a7=22可知a5=11,利用d=a5-a4計(jì)算即得結(jié)論;
(2)通過(guò)(1)、裂項(xiàng)可知$\frac{1}{{S}_{n}}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),進(jìn)而并項(xiàng)相加即得結(jié)論.

解答 (1)解:依題意,2a5=a3+a7=22,即a5=11,
又∵a4=9,
∴公差d=a5-a4=2,
∴an=a4+(n-4)d=2n+1;
(2)證明:由(1)可知${S_n}={n^2}+2n$,
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
累加得:$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}=\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})<\frac{3}{4}$.

點(diǎn)評(píng) 本題考查是一道關(guān)于數(shù)列與不等式的綜合題,考查求數(shù)列的通項(xiàng)及前n項(xiàng)和,利用裂項(xiàng)相消法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{bn}滿足b1=1,b2=3,bn=$\frac{{^{2}}_{n-1}+2}{_{n-2}}$(n≥3),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.若函數(shù)f(x)=$\sqrt{x}$-1n(x+a)(a>0)在(1,2)上單減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若函數(shù)f(x)=|$\frac{{x}^{2}+4x+1}{x}$|-a的圖象與x軸恰有四個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍為(0,2)∪(6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知全集U=R,集合A={x|-1≤x≤3},集合B={x|log2(x-2)>1},則A∪B=[-1,3]∪(4,+∞);A∩(∁UB)=[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求直線x-y=0和橢圓$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1$的兩個(gè)交點(diǎn)及焦點(diǎn)間距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知A、B、C分別為△ABC的三邊a、b、c所對(duì)的角,△ABC的面積為S,且$\sqrt{3}abcosC=2S$.
(1)求角C的大;
(2)若$c=\sqrt{6}$,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=log2(x-3).
(1)求f(51)-f(6)的值;
(2)求f(x)的定義域;
(3)若f(x)≥0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=m-$\frac{2}{{{5^x}+1}}$.
(1)用定義證明f(x)在R上單調(diào)遞增
(2)若f(x)是R上的奇函數(shù),求m的值.
(3)在(2)條件下,關(guān)于x的方程f(x)+λ+1=0在[0,3]上有解,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案