6個(gè)大小相同的小球分別標(biāo)有數(shù)字1,1,1,2,2,2,把它們放在一個(gè)盒子里,從中任意摸出兩個(gè)小球,它們所標(biāo)有的數(shù)字分別為x,y,記ξ=x+y.
(1)求隨機(jī)變量ξ分布列及數(shù)學(xué)期望.
(2)設(shè)“函數(shù)f (x)=x2-ξx-1在區(qū)間(2,3)上有且只有一個(gè)零點(diǎn)”為事件A,求事件A發(fā)生的概率.
【答案】分析:(1)由題知隨機(jī)變量ξ的可能取值為2,3,4.結(jié)合變量對(duì)應(yīng)的事件,求每一個(gè)事件的概率,當(dāng)變量是2時(shí),從盒子中摸出兩個(gè)小球的基本事件總數(shù)為C62,摸出的小球所標(biāo)的數(shù)字為1,1,共有C32種.得到概率,以此類推,寫出分布列和期望.
(2)首先整理函數(shù)f(x)=x2-ξx-1在(2,3)上有且只有一個(gè)零點(diǎn)時(shí),要滿足的條件,根據(jù)實(shí)根存在性定理得到f(2)•f(3)<0即(3-2ξ)(8-3ξ)<0,求出變量的范圍,得到對(duì)應(yīng)的ξ的值,根據(jù)第一問做出結(jié)果,得到概率.
解答:解:(1)由題知隨機(jī)變量ξ的可能取值為2,3,4.
從盒子中摸出兩個(gè)小球的基本事件總數(shù)為C62=15.
當(dāng)ξ=2時(shí),摸出的小球所標(biāo)的數(shù)字為1,1,共有C32種.
∴P(ξ=2)=
當(dāng)ξ=3時(shí),摸出的小球所標(biāo)的數(shù)字為1,2,共有C31•C31種.
∴P(ξ=3)=
當(dāng)ξ=4時(shí),摸出的小球所標(biāo)的數(shù)字為2,2,共有C32種.
∴P(ξ=4)=
∴ξ的分布列為

Eξ=2×+3×+4×=3.

(2)∵函數(shù)f(x)=x2-ξx-1在(2,3)上有且只有一個(gè)零點(diǎn).
f(2)•f(3)<0即(3-2ξ)(8-3ξ)<0
且ξ=2,3,4
∴ξ=2.
∴P(A)=P(ξ=2)=
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和期望,考查等可能事件的概率,考查函數(shù)零點(diǎn)的存在性定理,考查用概率知識(shí)解決數(shù)學(xué)問題,是一個(gè)綜合題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝有10個(gè)大小相同的小球,其中黑球3個(gè),白球n,(4≤n≤6)個(gè),其余均為紅球;
(1)從袋中一次任取2個(gè)球,如果這2個(gè)球顏色相同的概率是
415
,求紅球的個(gè)數(shù).
(2)在(1)的條件下,從袋中任取2個(gè)球,若取一個(gè)白球記1分,取一個(gè)黑球記2分,取一個(gè)紅球記3分,用ξ表示取出的兩個(gè)球的得分的和;
①求隨機(jī)變量ξ的分布列及期望Eξ.^
②記“關(guān)于x的不等式ξx2-ξx+1>0的解集是實(shí)數(shù)集R”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆河北省唐山市高三下學(xué)期第二次模擬考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)
口袋中有6個(gè)大小相同的小球,其中1個(gè)小球標(biāo)有數(shù)字“3”,2個(gè)小球標(biāo)有數(shù)字“2”,3個(gè)小球標(biāo)有數(shù)字“1”,每次從中任取一個(gè)小球,取后放回,連續(xù)抽取兩次。
(I)求兩次取出的小球所標(biāo)數(shù)字不同的概率;
(II)記兩次取出的小球所標(biāo)數(shù)字之和為,求的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省唐山市高三下學(xué)期第二次模擬考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

        口袋中有6個(gè)大小相同的小球,其中1個(gè)小球標(biāo)有數(shù)字“3”,2個(gè)小球標(biāo)有數(shù)字“2”,3個(gè)小球標(biāo)有數(shù)字“1”,每次從中任取一個(gè)小球,取后放回,連續(xù)抽取兩次。

   (I)求兩次取出的小球所標(biāo)數(shù)字不同的概率;

   (II)記兩次取出的小球所標(biāo)數(shù)字之和為,求的分布列和期望。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0103 期中題 題型:解答題

袋中裝有10個(gè)大小相同的小球,其中黑球3個(gè),白球n個(gè)(4≤n≤6) ,其余均為紅球。
(1)從袋中一次任取2個(gè)球,如果這2個(gè)球顏色相同的概率是,求紅球的個(gè)數(shù);
(2)在(1)的條件下,從袋中任取2個(gè)球,若取一個(gè)白球記1分,取一個(gè)黑球記2分,取一個(gè)紅球記3分,用ξ表示取出的兩個(gè)球的得分的和;
①求隨機(jī)變量ξ的分布列及期望Eξ;
②記“關(guān)于x的ξx2-ξx+1>0不等式的解集是實(shí)數(shù)集R”為事件A,求事件A發(fā)生的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省鹽城市建湖縣高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

袋中裝有10個(gè)大小相同的小球,其中黑球3個(gè),白球n,(4≤n≤6)個(gè),其余均為紅球;
(1)從袋中一次任取2個(gè)球,如果這2個(gè)球顏色相同的概率是,求紅球的個(gè)數(shù).
(2)在(1)的條件下,從袋中任取2個(gè)球,若取一個(gè)白球記1分,取一個(gè)黑球記2分,取一個(gè)紅球記3分,用ξ表示取出的兩個(gè)球的得分的和;
①求隨機(jī)變量ξ的分布列及期望Eξ.^
②記“關(guān)于x的不等式ξx2-ξx+1>0的解集是實(shí)數(shù)集R”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案