【題目】設函數(shù)f(x)的定義域是(0,+∞),且對任意正實數(shù)x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時,f(x)>0.

(1)求f()的值;

(2)判斷y=f(x)在(0,+∞)上的單調性并給出證明;

(3)解不等式f(2x)>f(8x-6)-1.

【答案】(1)-1 ; (2)見解析; (3){x|}.

【解析】

(1)先給x,y取值,當x=y(tǒng)=1時,求出 f(1)=0. 當x=2,y=時,即可求出f()的值.(2) y=f(x)在(0,+∞)上為增函數(shù),再利用單調性的定義證明.(3) 由(1)知,f()=-1,所以f(8x-6)-1=f(8x-6)+f(),得到f(2x)>f(4x-3),再利用函數(shù)的單調性解不等式得解.

(1)對于任意x,y∈R都有f(xy)=f(x)+f(y),

∴當x=y(tǒng)=1時,有f(1)=f(1)+f(1),∴f(1)=0.

當x=2,y=時,有f(2×)=f(2)+f(),

即f(2)+f()=0,又f(2)=1,∴f()=-1.

(2)y=f(x)在(0,+∞)上為增函數(shù),證明如下:

設0<x1<x2,則f(x1)+f()=f(x2),

即f(x2)-f(x1)=f().

>1,故f()>0,

即f(x2)>f(x1),故f(x)在(0,+∞)上為增函數(shù).

(3)由(1)知,f()=-1,∴f(8x-6)-1=f(8x-6)+f()

=f( (8x-6))=f(4x-3)

∴f(2x)>f(4x-3),

∵f(x)在定義域(0,+∞)上為增函數(shù),∴

解得解集為{x|}.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質量的嚴重問題,為了了解聲音強度(單位:分貝)與聲音能量(單位:)之間的關系,將測量得到的聲音強度和聲音能量,2,…,10)數(shù)據(jù)作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.

表中,

(1)根據(jù)散點圖判斷,哪一個適宜作為聲音強度關于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)表中數(shù)據(jù),求聲音強度關于聲音能量的回歸方程;

(3)當聲音強度大于60分貝時屬于噪音,會產(chǎn)生噪音污染,城市中某點共受到兩個聲源的影響,這兩個聲源的聲音能量分別是,且.已知點的聲音能量等于聲音能量之和.請根據(jù)(1)中的回歸方程,判斷點是否受到噪音污染的干擾,并說明理由.

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其導函數(shù)為

1)討論函數(shù)的單調性;

2)若,關于的不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=-2sin2xsin 2x1,給出下列四個命題:

①在區(qū)間上是減函數(shù);

②直線是函數(shù)圖象的一條對稱軸;

③函數(shù)f(x)的圖象可由函數(shù)的圖象向左平移而得到;

④若,則f(x)的值域是

其中正確命題序號是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)的導函數(shù)為,且,若存在實數(shù),使不等式對于任意恒成立,則實數(shù)的取值范圍是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2aln x(aR).

(1)f(x)x=2處取得極值,求a的值;

(2)f(x)的單調區(qū)間;

(3)求證:當x>1時, x2+ln x<x3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)滿足,的虛部為2,

1)求復數(shù)

2)設在復平面上對應點分別為,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,點在橢圓上,有,橢圓的離心率為

(1)求橢圓的標準方程;

(2)已知,過點作斜率為kk>0)的直線與橢圓交于,不同兩點,線段的中垂線為,記的縱截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市交通管理有關部門對年參加駕照考試的歲以下的學員隨機抽取名學員,對他們的科目三(道路駕駛)和科目四(安全文明相關知識)進行兩輪測試,并把兩輪成績的平均分作為該學員的抽測成績,記錄數(shù)據(jù)如下:

學員編號

科目三成績

科目四成績

1)從年參加駕照考試的歲以下學員中隨機抽取一名學員,估計這名學員抽測成績大于或等于分的概率;

2)根據(jù)規(guī)定,科目三和科目四測試成績均達到分以上(含分)才算合格,從抽測的號學員中任意抽取兩名學員,記為抽取學員不合格的人數(shù),求的分布列和數(shù)學期望

查看答案和解析>>

同步練習冊答案