【題目】已知函數(shù)f(x)=x-4+ ,x∈(0,4),當(dāng)x=a時(shí),f(x)取得最小值b,則函數(shù)g(x)=a|x+b|的圖象為( )
A.
B.
C.
D.

【答案】A
【解析】∵x∈(0,4),∴x+1>1,∴f(x)=x-4+ =x+1+ -5≥2 -5=1,當(dāng)且僅當(dāng)x=2時(shí)取等號(hào),此時(shí)函數(shù)f(x)有最小值1.∴a=2,b=1,∴g(x)=2|x+1| ,
此函數(shù)可以看成由函數(shù)y= 的圖象向左平移1個(gè)單位得到,結(jié)合指數(shù)函數(shù)的圖象及選項(xiàng)可知A正確. 故答案為:A.
根據(jù)題意結(jié)合x的取值范圍求出x+1的取值范圍,再由基本不等式求出f(x) 的最小值,從而求出a、b的值,再由分段函數(shù)的平移特點(diǎn)結(jié)合指數(shù)函數(shù)的圖像和性質(zhì)即可得出結(jié)果。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱 中,底面 是正方形,且 ,

(1)求證: ;
(2)若動(dòng)點(diǎn) 在棱 上,試確定點(diǎn) 的位置,使得直線 與平面 所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC是邊長(zhǎng)為4的正三角形,點(diǎn)P1 , P2 , P3 , 四等分線段BC(如圖所示)

(1)P為邊BC上一動(dòng)點(diǎn),求 的取值范圍?
(2)Q為線段AP1上一點(diǎn),若 =m + ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1+ )(1+x)6展開式中x2的系數(shù)為( 。
A.15
B.20
C.30
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 是定義在 上的函數(shù),則“函數(shù) 為偶函數(shù)”是“函數(shù) 為奇函數(shù)”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市初三畢業(yè)生參加中考要進(jìn)行體育測(cè)試,某實(shí)驗(yàn)中學(xué)初三(8)班的一次體育測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的涂黑,但可見部分如圖,據(jù)此解答如下問題.

(Ⅰ)求全班人數(shù)及中位數(shù),并重新畫出頻率直方圖;
(Ⅱ)若要從分?jǐn)?shù)在 之間的成績(jī)中任取兩個(gè)學(xué)生成績(jī)分析學(xué)生得分情況,在抽取的學(xué)生中,求至少有一個(gè)分?jǐn)?shù)在 之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐 中,底面 為正方形, 平面 ,且 ,點(diǎn) 在線段 上,且 .

(Ⅰ)證明:平面 平面 ;
(Ⅱ)求四棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個(gè)命題,其中所有真命題的序號(hào)為
①函數(shù) 在區(qū)間 上存在一個(gè)零點(diǎn),則 的取值范圍是
②“ ”是“ 成等比數(shù)列”的必要不充分條件;
, ;
④若 ,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng) 時(shí),求函數(shù) 的圖象在 處的切線方程;
(2)若函數(shù) 在定義域上為單調(diào)增函數(shù).
①求 最大整數(shù)值;
②證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案