A.BC∥B¢C¢且方向相同 B.BC∥B¢C¢且方向不相同
C.BC與B¢C¢不一定平行 D.BC與B¢C¢不平行
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:013
若ÐABC=ÐA'B'C',且AB∥A¢B¢,BA與B¢A¢的方向又相同,則下列結(jié)論正確的是(。
A.BC∥B¢C¢且方向相同 B.BC∥B¢C¢且方向不相同
C.BC與B¢C¢不一定平行 D.BC與B¢C¢不平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
(甲)如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為a,點(diǎn)M在邊BC上,DAMC1是以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形.
(1)求證:點(diǎn)M為邊BC的中點(diǎn);
(2)求點(diǎn)C到平面AMC1的距離;
(3)求二面角M-AC1-C的大。
(乙)如圖,直三棱柱ABC-A1B1C1中,底面是以ÐABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點(diǎn),E為B1C的中點(diǎn).
(1)求直線BE與A1C所成的角;
(2)在線段AA1上是否存在點(diǎn)F,使CF^平面B1DF,若存在,求出;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江杭州七校高二上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)如圖,在四面體A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點(diǎn).
(1)證明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C−BM−D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB、
PC的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若ÐPDA=45°求EF與平面ABCD所成的角的大。
【解析】本試題主要考查了線面平行和線線垂直的運(yùn)用,以及線面角的求解的綜合運(yùn)用
第一問(wèn)中,利用連AC,設(shè)AC中點(diǎn)為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點(diǎn) ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點(diǎn) ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO ∴ EF∥平面PAD.
第二問(wèn)中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC∴ EO為EF在平面AC內(nèi)的射影 ∴ CD⊥EF.
第三問(wèn)中,若ÐPDA=45°,則 PA=AD=BC ∵ EOBC,F(xiàn)OPA
∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°
證:連AC,設(shè)AC中點(diǎn)為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點(diǎn)∴ FO∥PA …………① 在△ABC中,∵ E、O分別為AB、AC的中點(diǎn) ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD
∵ EF Ì 平面EFO ∴ EF∥平面PAD.
(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC ∴ EO為EF在平面AC內(nèi)的射影 ∴ CD⊥EF.
(3)若ÐPDA=45°,則 PA=AD=BC ∵ EOBC,F(xiàn)OPA
∴ FO=EO 又 ∵ FO⊥平面AC ∴ △FOE是直角三角形 ∴ ÐFEO=45°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com