ÐABC=ÐA'B'C',且ABA¢B¢,BAB¢A¢的方向又相同,則下列結(jié)論正確的是(。

ABCB¢C¢且方向相同        BBCB¢C¢且方向不相同

CBCB¢C¢不一定平行      DBCB¢C¢不平行

 

答案:C
提示:

平行的定義


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

ÐABC=ÐA'B'C',且ABA¢B¢,BAB¢A¢的方向又相同,則下列結(jié)論正確的是(。

ABCB¢C¢且方向相同        BBCB¢C¢且方向不相同

CBCB¢C¢不一定平行      DBCB¢C¢不平行

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為a,點(diǎn)M在邊BC上,DAMC1是以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形

1求證:點(diǎn)M為邊BC的中點(diǎn);

2求點(diǎn)C到平面AMC1的距離;

3求二面角M-AC1-C的大。

如圖,直三棱柱ABC-A1B1C1中,底面是以ÐABC為直角的等腰直角三角形,AC=2a,BB1=3a,DA1C1的中點(diǎn),EB1C的中點(diǎn).

1求直線BEA1C所成的角;

2在線段AA1上是否存在點(diǎn)F,使CF^平面B1DF,若存在,求出;若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江杭州七校高二上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)如圖,在四面體A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點(diǎn).

(1)證明:平面ABC平面ADC;

(2)若ÐBDC=60°,求二面角C−BM−D的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB、

PC的中點(diǎn).

(1)求證:EF∥平面PAD;

(2)求證:EF⊥CD;

(3)若ÐPDA=45°求EF與平面ABCD所成的角的大。

【解析】本試題主要考查了線面平行和線線垂直的運(yùn)用,以及線面角的求解的綜合運(yùn)用

第一問(wèn)中,利用連AC,設(shè)AC中點(diǎn)為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點(diǎn)   ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點(diǎn) ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二問(wèn)中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO為EF在平面AC內(nèi)的射影       ∴ CD⊥EF.

第三問(wèn)中,若ÐPDA=45°,則 PA=AD=BC    ∵ EOBC,F(xiàn)OPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

證:連AC,設(shè)AC中點(diǎn)為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點(diǎn)∴ FO∥PA …………①    在△ABC中,∵ E、O分別為AB、AC的中點(diǎn)  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO為EF在平面AC內(nèi)的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,則 PA=AD=BC         ∵ EOBC,F(xiàn)OPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

同步練習(xí)冊(cè)答案