已知二次函數(shù)f(x)有兩個(gè)零點(diǎn)0和-2,且f(x)最小值是-1,函數(shù)g(x)與f(x)的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
解析:(1)依題意,設(shè)f(x)=ax(x+2)=ax2+2ax(a>0).
∵f(x)圖象的對(duì)稱軸是x=-1,
∴f(-1)=-1,即a-2a=-1,得a=1.
∴f(x)=x2+2x.
又∵函數(shù)g(x)的圖象與f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,
∴g(x)=-f(-x)=-x2+2x.
(2)由(1)得h(x)=x2+2x-λ(-x2+2x)
=(λ+1)x2+2(1-λ)x.
①當(dāng)λ=-1時(shí),h(x)=4x滿足在區(qū)間[-1,1]上是增函數(shù);
②當(dāng)λ<-1時(shí),h(x)圖象對(duì)稱軸是x=,
則≥1,又λ<-1,解得λ<-1;
③當(dāng)λ>-1時(shí),同理則需≤-1,
又λ>-1,解得-1<λ≤0.
綜上,滿足條件的實(shí)數(shù)λ的取值范圍是(-∞,0].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知定義在R上的奇函數(shù),f(x)滿足f(x+2)=-f(x),則f(6)的值為
( ).
A.-1 B.0 C.1 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若方程x2+(k-2)x+2k-1=0的兩根中,一根在0和1之間,另一根在1和2之間,則實(shí)數(shù)k的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)的圖象( )
A. 關(guān)于原點(diǎn)對(duì)稱
B. 關(guān)于直線y=x對(duì)稱
C. 關(guān)于x軸對(duì)稱
D. 關(guān)于y軸對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2
解析 g(x)上的點(diǎn)P(a,1)關(guān)于直線x=1的對(duì)稱點(diǎn)P′(2-a,1)應(yīng)在f(x)=a-x上,
∴1=aa-2.∴a-2=0,即a=2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com