拋物線的頂點在原點,焦點是圓x2+y2-4x=0的圓心,斜率為2的直線l過焦點,且與拋物線、圓依次交于點A、B、C、D,則|AB|+|CD|的值等于______________.

6


解析:

圓方程為(x-2)2+y2=4,圓心(2,0),半徑r=2,

∴l(xiāng)的方程為y=2(x-2).代入拋物線方程y2=8x,得x2-6x+4=0.

∴|AD|=x1+x2+p=6+4=10.

因此|AB|+|CD|=|AD|-2r=10-4=6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、拋物線的頂點在原點,對稱軸是坐標(biāo)軸,且焦點在直線x-y+4=0上,則此拋物線方程為
y2=-16x或x2=16y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線的頂點在原點,準(zhǔn)線方程為x=-2,則拋物線的方程是( 。
A、y2=-8xB、y2=8xC、y2=-4xD、y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)本題主要考查拋物線的標(biāo)準(zhǔn)方程、簡單的幾何性質(zhì)等基礎(chǔ)知識,考查運算求解、推理論證的能力.
如圖,在平面直角坐標(biāo)系xOy,拋物線的頂點在原點,焦點為F(1,0).過拋物線在x軸上方的不同兩點A、B,作拋物線的切線AC、BD,與x軸分別交于C、D兩點,且AC與BD交于點M,直線AD與直線BC交于點N.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求證:MN⊥x軸;
(3)若直線MN與x軸的交點恰為F(1,0),求證:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的頂點在原點,對稱軸是坐標(biāo)軸,且焦點在直線x-y+2=0上,則此拋物線方程為
y2=-8x或x2=8y
y2=-8x或x2=8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)實軸長為4
3
的橢圓的中心在原點,其焦點F1,,F(xiàn)2在x軸上.拋物線的頂點在原點O,對稱軸為y軸,兩曲線在第一象限內(nèi)相交于點A,且AF1⊥AF2,△AF1F2的面積為3.
(Ⅰ)求橢圓和拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過點A作直線l分別與拋物線和橢圓交于B,C,若
AC
=2
AB
,求直線l的斜率k.

查看答案和解析>>

同步練習(xí)冊答案