精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),過點(diǎn)P(a,0)(a>0)作直線l分別交射線OA,OB于A,B兩點(diǎn),且
AP
=2
PB
,則直線l的斜率為
 
分析:設(shè)出A,B的坐標(biāo),分別代入兩條直線方程,求出向量
AP
,
PB
的坐標(biāo),結(jié)合
AP
=2
PB
列式,最后把所有量都用x2表示,代入兩點(diǎn)求斜率公式得答案.
解答:解:設(shè)A(x1,y1),B(x2,y2),
則y1=x1y2=-
3
3
x2
   ①.
又點(diǎn)P(a,0)(a>0),
AP
=(a-x1,-y1),
PB
=(x2-a,y2)
,
AP
=2
PB
,得
a-x1=2x2-2a
-y1=2y2
    ②.
聯(lián)立①②得:a=(
2
3
3
+2)x2

∴直線l的斜率k=
y2-y1
x2-x1
=
3y2
x2+2x2-a

=
-
3
x2
3x2-(
2
3
3
+2)x2
=3(2+
3
)

故答案為:3(2+
3
)
點(diǎn)評(píng):本題考查了平行向量與共線向量,考查了兩點(diǎn)求直線的斜率,體現(xiàn)了整體運(yùn)算思想方法,考查了學(xué)生的計(jì)算能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),
過點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B點(diǎn).
①當(dāng)AB的中點(diǎn)為P時(shí),求直線AB的方程;
②當(dāng)AB的中點(diǎn)在直線y=
1
2
x上時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo),求:
(1)直線AB的一般式方程;
(2)AC邊上的高所在直線的斜截式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,直線y=6-x與y=
4x
(x>0)
的圖象相交于點(diǎn)A、B,設(shè)點(diǎn)A的坐標(biāo)為(x1,y1),那么長(zhǎng)為x1,寬為y1的矩形面積和周長(zhǎng)分別為
4,12
4,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,A,B,C三點(diǎn)在x軸上,原點(diǎn)O和點(diǎn)B分別是線段AB和AC的中點(diǎn),已知AO=m(m為常數(shù)),平面上的點(diǎn)P滿足PA+PB=6m.
(1)試求點(diǎn)P的軌跡C1的方程;
(2)若點(diǎn)(x,y)在曲線C1上,求證:點(diǎn)(
x
3
,
y
2
2
)
一定在某圓C2上;
(3)過點(diǎn)C作直線l,與圓C2相交于M,N兩點(diǎn),若點(diǎn)N恰好是線段CM的中點(diǎn),試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓G的離心率為
15
4
,左頂點(diǎn)為A(-4,0).圓O′:(x-2)2+y2=
4
9

(Ⅰ)求橢圓G的方程;
(Ⅱ)過M(0,1)作圓O′的兩條切線交橢圓于E、F,判斷直線EF與圓的位置關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案