17.已知正實(shí)數(shù)a,b,c為三角形的三邊長,求證:$\frac{c}{a+b}$+$\frac{a}{b+c}$+$\frac{c+a}$>2.

分析 根據(jù)三角形的三邊的關(guān)系以及不等式的基本性質(zhì)即可證明.

解答 解:∵正實(shí)數(shù)a,b,c為三角形的三邊長,
∴a+b>c,b+c>a,c+a>b,
∴$\frac{c}{a+b}$+$\frac{a}{b+c}$+$\frac{c+a}$>$\frac{2c}{a+b+c}$+$\frac{2a}{a+b+c}$+$\frac{2b}{a+b+c}$=2,
問題得以證明.

點(diǎn)評 本題考查了不等式的證明,關(guān)鍵掌握其性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知cos($\frac{π}{6}$-α)=$\frac{{\sqrt{3}}}{3}$,則sin($\frac{5π}{6}$-2α)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知sinα=$\frac{3}{4}$,α∈[$\frac{π}{2}$,π],求cosα、tanα的值.
(2)已知tanθ=-2,求$\frac{{cos(θ-5π)+3cos(\frac{π}{2}-θ)}}{{2sin(θ-\frac{3π}{2})+sin(-θ-4π)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=kax-a-x(a>0且a≠1)是奇函數(shù),f(1)=$\frac{3}{2}$.
(Ⅰ)求函數(shù)f(x)在[1,+∞)上的值域;
(Ⅱ)若函數(shù)g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值為-2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.下列四個命題中
(1)若α>β,則sinα>sinβ
(2)命題:“?x>1,x2>1”的否定是“?x≤1,x2≤1”
(3)直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1
(4)“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”
其中正確的一個命題序號是(3)考點(diǎn):命題的否定,逆否命題,充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知y=f(x)(x∈R)的導(dǎo)函數(shù)為f′(x).若f(x)-f(-x)=2x,且當(dāng)x≥0時(shí),f′(x)>1,則不等式f(x)-f(x-1)>1的解集是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.將容量為100的樣本數(shù)據(jù),按從小到大的順序分成8個組,如表:
組號12345678
頻數(shù)914141312x1310
則第六組的頻率為0.15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某商店預(yù)備在一個月內(nèi)分批購買每張價(jià)值為200元的書桌共36臺,每批都購入x臺(x是正整數(shù)),且每批均需付運(yùn)費(fèi)40元,儲存購入的書桌一個月所付的保管費(fèi)與每批購入書桌的總價(jià)值(不含運(yùn)費(fèi))成正比,若每批購入4臺,則該月需用去運(yùn)費(fèi)和保管費(fèi)共520元,現(xiàn)在全月只有480元資金可以用于支付運(yùn)費(fèi)和保管費(fèi).
(1)求該月需用去的運(yùn)費(fèi)和保管費(fèi)的總費(fèi)用f(x);
(2)能否恰當(dāng)?shù)匕才琶颗M(jìn)貨的數(shù)量,使資金夠用?寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,則f(f($\frac{1}{e}$))=(  )
A.$\frac{1}{e}$B.eC.-$\frac{1}{e}$D.-e

查看答案和解析>>

同步練習(xí)冊答案