已知函數(shù)如果對(duì)區(qū)間(2,3)上任意實(shí)數(shù)x,函數(shù)都大于0,則數(shù)c 取值范圍為(  )

A、  B、(—12,0)    C、(—12,—6)   D、(—6,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•天河區(qū)三模)設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f'(x).如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),則稱(chēng)函數(shù)f(x)具有性質(zhì)P(a).
(1)設(shè)函數(shù)f(x)=Inx+
b+2x+1
(x>1)
,其中b為實(shí)數(shù).
(i)求證:函數(shù)f(x)具有性質(zhì)P(b);
(ii)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x+
a
x
(x>0)有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
b2
x
(x>0)的值域?yàn)閇6,+∞),求b的值;
(2)研究函數(shù)y=x2+
c
x2
(x>0,常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并用定義證明(若有多個(gè)單調(diào)區(qū)間,請(qǐng)選擇一個(gè)證明);
(3)對(duì)函數(shù)y=x+
a
x
和y=x2+
a
x2
(x>0,常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫(xiě)出結(jié)論,不必證明),并求函數(shù)F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|4x-x2|(x∈R),對(duì)于任意的正實(shí)數(shù)t∈(0,b],定義:函數(shù)f(x)在[0,t]上的最小值為N(t),函數(shù)f(x)在[0,t]上的最大值為M(t),現(xiàn)若存在最小正整數(shù)m,使得M(t)-N(t)≤m•t對(duì)任意的正實(shí)數(shù)t∈(0,b]成立,則稱(chēng)函數(shù)f(x)為區(qū)間(0,b]的“m階收縮函數(shù)”
(1)當(dāng)t∈(0,1]時(shí),試寫(xiě)出N(t),M(t)的表達(dá)式,并判斷函數(shù)f(x)是否為(0,1]上的“m階收縮函數(shù)”,如果是,請(qǐng)寫(xiě)出對(duì)應(yīng)的m的值;(只寫(xiě)出相應(yīng)結(jié)論,不要求證明過(guò)程)
(2)若函數(shù)f(x)是(0,b]上的4階收縮函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州模擬)已知函數(shù)y=f(x)在區(qū)間[a,b]上均有意義,且A、B是其圖象上橫坐標(biāo)分別為a、b的兩點(diǎn).對(duì)應(yīng)于區(qū)間[0,1]內(nèi)的實(shí)數(shù)λ,取函數(shù)y=f(x)的圖象上橫坐標(biāo)為x=λa+(1-λ)b的點(diǎn)M,和坐標(biāo)平面上滿(mǎn)足
MN
MA
+(1-λ)
MB
的點(diǎn)N,得
MN
.對(duì)于實(shí)數(shù)k,如果不等式|MN|≤k對(duì)λ∈[0,1]恒成立,那么就稱(chēng)函數(shù)f(x)在[a,b]上“k階線(xiàn)性近似”.若函數(shù)y=x2+x在[1,2]上“k階線(xiàn)性近似”,則實(shí)數(shù)k的取值范圍為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案